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1 Preface

This documentis based on publicly available information (or which was publicly available for some time) and personal
experience with the AMD CodeAnalyst tool. Correctness cannot be guaranteed. It may turn out to be totally wrong.
Corrections are welcome.

Basic knowledge of branch prediction mechanisms is recommended.

2 Branch Detection and Target Address Prediction

Instruction fetches are 16-byte wide, aligned on 16-byte boundaries. The branch prediction provides the address of
the next 16-byte fetch block, the position of the first valid byte in the predicted block and the position of the last
valid instruction byte in the current 16-byte block. It may predict up to two non-return branches and one return per
16-byte block. Excessive mispredictions may occur if this number is exceeded. So beware of dense branches. e.g. in
some implementations of switch statements.

The branch predictor is associated with the instruction cache. In principle, there is one branch selector block associated
with each 16-byte cache block. If a cache line (64 bytes) is replaced, all selector blocks for the cache line are invalidated.
When the predecoder finds a predictable unconditional branch, the predictor is set accordingly and predecoding
continues at the branch target. Conditional branches are not predicted by the predecoder.

For 64KB instruction cache, a complete implementation of this scheme needs in 64K /16 = 4K selector blocks and 8K
target addresses, or a total capacity of "40KB. But actually there is only enough space for up to 2048 target addresses
and the predictor tables are folded twice to achieve this reduction.

The instruction cache is 2-way associative and each way consists of 2048 blocks of 16 bytes (a 64-byte cache line
consists of 4 blocks). There are only 1024 selector blocks per way and 1024 target blocks in total, so cache block 1024
shares the predictor blocks with cache block 0, cache block 1025 with cache block 1 and so on. There is a tag bit
(A14) stored in a selector block to distinguish both cache blocks which map to the same selector block. If the tag bit
does not match, there is no prediction and fetching continues sequentially.

Both selector tables share a single target address table. So while there may be up to 4 non-return branch selectors
in a selector block set (the two selector blocks in both ways having the same index), the prediction is limited to 2
branches per set and target address mispredictions occur if there are more. Since return addresses are predicted using
a 12-entry return address stack, return instructions do not interfere.

For simplification, figure 1 shows 3 distinct branch selector fields in each selector block. Actually they are encoded as
shown in figure 2 to reduce the time required for evaluation. There are 9 selectors per selector block, 2 bits each, which
indicate the prediction for an instruction fetch which starts at the respective offset. All predicted branches except for
the single-byte return (opcode C3) are at least 2 bytes long, so there may be at most one branch ending in any pair
of bytes. The selectors for offsets 0 and 1 have to be distinct because while a branch ending at offset 8 is encoded
in all selectors up to offset 7 but not in the selector for offsets 8 and 9, a branch ending at offset 0 must be present
in the fetch block where branch ends, not just in the preceding fetch block. Single-byte return instructions impose a
problem as their location is ambiguous. If a nonsequential fetch (a branch target fetch or a misprediction recovery)
starts at the location of a return instruction and the offset is even and not 0, the return instruction is mispredicted.
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This prediction mechanism is very fast because no correlations between branch positions have to be considered at
prediction time, and if selector presence implies taken (see below), even the outcome prediction does not cause further
delays. In some preceding designs, AMD ran the prediction to the instruction fetch stage, to avoid any delay for taken
branches. However since one of the key design goals of the K7 was clock speed, the predictor actually runs in the
second pipeline stage. So there is a single cycle fetch bubble for correctly predicted taken branches. But there is a
small queue between fetch and decode and, on average, the fetch bandwidth exceeds the decode bandwidth. So if
there is no more than one taken branch per 2..3 fetch blocks, this bubble is likely to be hidden.

3 Conditional Branches

The initial prototype used a fairly simple mechanism for taken / not taken prediction of conditional branches. In the
target block entry (figure 3), there was an additional bit for conditional branches, which can be thought of as the LSB
of a crippled saturating 2-bit counter predictor having 3 states instead of 4. A previously undetected taken branch
entered the predictor in state 2 (weakly taken) and if it was still taken on the next occasion the state was incremented
to 3 (strongly taken). If a branch in state 2 was mispredicted, the corresponding selectors were removed from the
selector block, to predict not taken next time. However this situation was identical to a previously unseen branch, so
there was no strongly not taken state as in a regular 2-bit counter predictor. No matter how often a branch was not
taken, on the next time it was taken, it entered the predictor as weakly taken, to be predicted taken next time.

Somehow AMD must have found out that this predictor was far from being state of the art, especially for a machine
having such a long pipeline. And the K6 has an excellent history predictor, so why not use it? Well, the scheme
described in the previous section works best if the predictor can tell whether a branch is predicted taken next time,
to be able to evaluate the prediction at the time the selector block is updated in case of misprediction: if the selector
is present, it is predicted taken, otherwise it is predicted not taken. However the K6 predictor does not have this
property, the next outcome of a conditional branch cannot be predicted at time of misprediction because it depends
on the outcome of the 9 branches executed before.

Nevertheless AMD decided to use the history predictor of the K6 in the production version, but reduced the global
history from 9 to 8 bits to conserve chip space. The prediction history bit in the target block entry changed its meaning
into is a conditional branch and a selector hit does no longer imply a taken branch. Instead the outcome predictor
has to be consulted for a conditional branch and if there is some other branch in the fetch line beyond a not taken
branch, the predictor repeats the prediction process in the next clock cycle, starting beyond the first branch.

To avoid a fetch bubble for every not-taken conditional branch, the branch selector block contains additional informa-
tion on whether there may be some other branch beyond a conditional branch: if the M bit shown in figure 2 is reset,
a not-taken conditional branch predicts sequential. However I am uncertain about the exact conditions under which
the M bit is set, maybe it is just an indication for the number of branches encoded in the selector block (1, >1).
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Figure 4: Branch History Table
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