

Chaotic Random Number Generators with Random
Cycle Lengths
by Agner Fog

This document is published at www.agner.org/random/theory, December 2000, revised
November 25, 2001.

Abstract
A known cycle length has hitherto been considered an indispensable requirement for pseudo-
random number generators. This requirement has restricted random number generators to
suboptimal designs with known deficiencies. The present article shows that the requirement for
a known cycle length can be avoided by including a self-test facility. The distribution of cycle
lengths is analyzed theoretically and experimentally. As an example, a class of chaotic random
number generators based on bit-rotation and addition are analyzed theoretically and
experimentally. These generators, suitable for Monte Carlo applications, have good
randomness, long cycle lengths, and higher speed than other generators of similar quality.

Introduction
The literature on random number generators has often emphasized that random number
generators must be supported by theoretical analysis (Knuth 1998). In fact, most treatises on
random number generators have focused mainly on very simple generators, such as linear
congruential generators, in order to make theoretical analysis possible (e.g. Knuth 1998,
Niederreiter 1992, Fishman 1996). Unfortunately, such simple generators are known to have
serious defects (Entacher 1998). The sequence produced by a pseudo-random number
generator is deterministic, and hence not absolutely random. It always has some kind of
structure. The difference between good and bad generators is that the good ones have a better
hidden structure, i.e. a structure that is more difficult to detect by statistical tests and less likely
to interfere with specific applications (Couture and L’Ecuyer 1998). This criterion appears to be
in direct conflict with the need for mathematical tractability. The best random number generators
are likely to be the ones that are most difficult to analyze theoretically. The idea that mathe-
matical intractability may in fact be a desired quality has so far only been explored in
cryptographic applications (e.g. Blum et al 1986), not in Monte Carlo applications.
Mathematicians have done admirable efforts to analyze complicated random number
generators, but this doesn’t solve the fundamental dilemma between mathematical tractability
and randomness. Thus, we are left with the paradox that it may be impossible to know which
type of generator is best.

Two characteristics of random number generators need to be analyzed: randomness and cycle
length.

Randomness may be tested either by theoretical analysis or by statistical tests. Both methods
are equally valid in the sense that a particular defect may be detected by either method. Some
defects are most easily detected by theoretical analysis; other defects are easier to detect
experimentally. Thus, it is recommended that a generator be subjected to both types of testing.
The discipline of designing random number generators has reached a state where good
generators pass all experimental tests. Attempts at improvement have therefore in recent years

relied increasingly on theoretical testing.

It is often required that random number generators have very long cycle lengths (L'Ecuyer
1999). Theoretical analysis is the only way to find the exact cycle length in case the cycle is too
long to measure experimentally. However, experimental tests can assure that the cycle is longer
than the sequence of random numbers needed for a particular application. As is demonstrated
below, such a test can be performed "on the fly" in a very efficient way if the state transition
function is invertible.

Cycle lengths in random maps
A pseudo random number generator is based on the sequence

Sssfs nn ∈= −),(1 (1)

where the state transition function f maps the finite set S into itself. The number of possible
states is the cardinality of S:

Sm = (2)

Let F denote the set of all possible state transition functions:

{ }SSf →= :F (3)

Assume that we have picked a state transition function f at random from the mm members of F.
We now want to make sure that f can produce a sequence of cmin random numbers from a given
seed s0 without getting cyclic. Let ν be the length of the limiting cycle, and µ the length of any
transient aperiodic sequence. In other words:

ji ssji ≠⇒+<< νµ and

νµ +=⇒≥ nn ssn (4)

The mean values of ν and µ have been calculated by Harris (1960):

mE πν 2)(4
1≈ 1)()(+= νµ EE (5)

and the standard deviations

m

 −≈=

83
2 πσσ νµ (6)

Thus, to make sure that the first cmin states are different, i.e. that µ+ν > cmin, we have to let m >>
cmin

2. Unfortunately, setting m >> cmin
2 is no guarantee that the first cmin states are different,

because we have no easy way of picking f out of F that is sufficiently random to guarantee that
(5) and (6) hold; and experimental verification can be quite time-consuming.

The situation becomes easier when the state transition function f is invertible. Let G denote the

subset of F that contains all invertible mappings of S onto itself:

{ })()(:, tfsftsStsf ≠⇒≠∈∀∈= FG . (7)

If f is invertible then all trajectories must be cyclic, i.e. µ = 0.

Assume now that we have picked a state transition function f at random from the m! members of
G . Starting with the random seed s0, we apply the transition f repeatedly in order to find the
cycle length ν. If the first i states are different, then the probability that the next state will close
the cycle is im−

1 because only the initial state can close the circle.

The probability that the cycle length ν=c is then

mcm
pp

c

i
ic

1
1

11
1

1
=

+−

 −= ∑

−

=

 (8)

Thus, starting with a random seed, the length of the first cycle found will be uniformly
distributed:

),1(1 mUc ∈ (9)

An estimate of the expected number of cycles nc(m) can be derived from the fact that each
subsystem of orbits has the same qualities as the whole system. If we have found a cycle of
length c1 then the number of remaining cycles should be nc(m-c1). The average of nc(m-c1) over
all possible values of c1 should then be equal to nc(m)-1.

1)()(
1

1
1

1

−=−∑
=

mncmn c

m

c
cm (10)

For big m we can ignore quantization and replace the sum with an integral:

1)()(
1 11

1 −≈−∫ mndccmn c

m

cm (11)

This integral equation can be solved, using the approximation dnc(m)/dm ≈ nc(m) – nc(m-1), and
we get the approximate solution:

)1(log)(+≈ mmn ec (12)

A different path, described by Harris (1960), gives a slightly different approximation:

γ+≈)(log)(mmn ec (13)

where γ = 0.577 is Euler’s constant.

If we can find all cycles in the system, then we will see that their lengths are evenly distributed
on a logarithmic scale:

)log,0(log mUc eie ∈ (14)

The apparent discrepancy between (9) and (14) is explained by the fact that the former formula
expresses the length of the cycle you find from a given seed. Hitting a long cycle is more
probable than hitting a short cycle. (14), on the other hand, expresses the distribution of all
cycles in the system.

If we need Cmin random numbers for a particular application, then we can calculate the
probability of getting into a cycle of insufficient length from (9):

m
cccP min

min1)(=≤ . (15)

The advantage of choosing an invertible state transition function is not only that the mean cycle
length gets longer, but also that it is easier to verify experimentally that a sequence contains no
repetitions, because we only have to compare each new state si with the initial state s0. All
states between s0 and si are not possible successors of si.

It is recommended that this verification method be built into the code. Such a self-test can be
very fast (see below), and it provides the same certainty that a sequence is non-cyclic as the
use of a generator with known cycle length.

RANROT generators
The principle of random cycle lengths is exemplified by a new class of random number
generators similar to the additive or lagged Fibonacci generators, but with extra rotation or
swapping of bits. Several types are exemplified below. In a RANROT generator type A, the bits
are rotated after the addition, in type B they are rotated before the addition. You may have more
than two terms as in type B3 below, and you may rotate parts of the bitstrings separately as in
type W.

RANROT type A:

Xn = ((Xn-j + Xn-k) mod 2b) rotr r (16)

RANROT type B:

Xn = ((Xn-j rotr r1) + (Xn-k rotr r2)) mod 2b (17)

RANROT type B3:

Xn = ((Xn-i rotr r1) + (Xn-j rotr r2) + (Xn-k rotr r3)) mod 2b (18)

RANROT type W:

Zn = ((Yn-j rotr r3) + (Yn-k rotr r1)) mod 2b/2

Yn = ((Zn-j rotr r4) + (Zn-k rotr r2)) mod 2b/2

Xn = Yn + Zn · 2b/2 (19)

Where Xn is an unsigned binary number of b bits, Yn and Zn are b/2 bits.
Y rotr r means the bits of Y rotated r places to the right (000011112 rotr 3 = 111000012).

i, j and k are different integers. For simplicity, it is assumed that 0 < i < j < k, and that each r ∈
[0,b), except for type W where r ∈ [0,b/2).

The performance of these generators and the selection of good parameters is discussed below.

Bifurcation
Good random number generators appear to be chaotic, and this is in fact a desired quality. It is
therefore tempting to apply chaos theory to these systems. Unfortunately, chaos theory
traditionally applies to continuous systems only. A theory of deterministic chaos for discrete
systems has been proposed by Waelbroeck & Zertuche (1999), but their theory and definitions
apply only to infinite systems. A chaotic system with a finite number of discrete states has been
studied experimentally, but with little theoretical analysis (Cernák 1996).

The most distinctive characteristic of a chaotic system is bifurcation, i.e. divergence of
trajectories from adjacent starting points. A common measure of bifurcation is the Liapunov
exponent, λ, defined for continuous systems by

λεε ttt eSfSf ⋅=−+)()(00 (20)

where S is the state descriptor, f is the function that transforms a state into the next state, t is
the number of iterations, and ε is a small perturbation in the initial state. The formal definition of
the Liapunov exponent is the limit of λ for ε → 0 and t → ∞:

ε
ε

λ
ε

)()(
log1limlim)(00

00
SfSf

t
S

tt

et

−+
=

→∞→
 (21)

(Schuster 1995). This definition applies to idealized analytical models only. In physical systems
you cannot go to the limits. Since physical variables are limited, the distance between the two
trajectories cannot go towards infinity, and consequently λ will be zero in the limit t → ∞. The
distance can be expected to follow what resembles a logistic curve. In the beginning it grows
exponentially, but at some point it levels off when the limit of the physical variables is
approached. Similarly, the value of ε is limited downwards by precision, noise, and quantum
effects. A reasonable value of λ would be measured at a point where the distance grows
exponentially.

The same should apply to finite discrete systems. Assume that the state descriptor S consists of
n binary digits:

∑
−

=
−− ==

1

0
2021 2)...(

n

i
i

i
nn ssssS (22)

A difference between two states is defined by the Hamming distance, which is the number of
bits that differ (Waelbroeck & Zertuche, 1999):

∑
−

=

−=
1n

0i
iiH 'ss)'S,S(d (23)

Since the lowest possible value of ε is 1, we can define the Liapunov exponent for a finite
discrete system as:

))'(),((log1)(SfSfd
t

S tt
He=λ (24)

where dH(S,S’) = 1 and t is chosen within the area where the Hamming distance between the two
trajectories grows exponentially. The highest possible Hamming distance is n, and the average
distance between random states is n/2. We can therefore expect the average distance between
two trajectories from adjacent starting points to grow exponentially in the beginning, and finally
level off towards n/2. Experiments show that after a short period of exponential growth, the
distance grows approximately linearly until it finally levels off at the value n/2 (fig. 1).

fig. 1. Average Hamming distance between trajectories from adjacent starting points in RNG’s
with k=17, b=32. Each curve is averaged over 100,000 experiments.
Legend (left to right):
red = RANROT B3
green = RANROT W
purple = RANROT-A
blue = RANROT-B
black = lagged Fibonacci
The tiny kinks on the curves are systematic and reproducible.

The Liapunov exponent can be estimated for RANROT systems by calculating the probability
that a differing bit will generate a carry in the addition operation. If a differing bit generates a
carry in one of the trajectories, but not in the other, then the Hamming distance is increased by
one. The average number of carries generated by one differing bit when adding b-bit integers is

∑ ∑
−

=

−−

=

−=
1b

0i

i1b

1j

j2b
1)b(C (25)

which is close to 1 when b is big. The fraction of bits involved in addition is 2a/k, where a is the

number of addition operations in the state transition function. The expected value of the
Liapunov exponent will then be

 +=)(21log bC

k
a

eλ (26)

A comparison between theoretical and experimental Liapunov exponents for small t is given in
table 1.

RNG type b k a λ theoretical λ experimental

A, B, W 32 17 1 0.10 0.12

B3 32 17 2 0.20 0.18

Table 1. Theoretical and experimental Liapunov exponents for RANROT generators

The shape of the curve quickly diverges from exponential growth. The reason for this is that
carries from adjacent differing bits tend to cancel out so that the Hamming distance grows more
slowly.

The Liapunov exponent does not appear to be a good measure of randomness because
increasing k improves the randomness, but decreases λ. A RANROT generator can be
converted to a lagged Fibonacci generator by setting r = 0. This degrades randomness but
hardly affects λ. Finally, A random number generator that involves only exclusive-or and shift
operations may have λ=0, yet generators of acceptable randomness have been constructed in
this way (James 1990).

Nevertheless, bifurcation may in itself be a desired quality of random number generators, and
designs with high values of λ may be desired. Very high Liapunov exponents can be obtained
for generators that involve multiplication, such as multiple recursive generators (L'Ecuyer 1999)
and multiply-with-carry generators (Couture & L'Ecuyer 1997).

Test of RANROT generators

Cycle lengths

Small RANROT systems were analyzed experimentally, identifying all cycles in each system in
order to verify the distribution of cycle lengths. The biggest systems that were analyzed
exhaustively for cycle lengths had m = 232 states. Bigger systems were not analyzed in this way
because of the high amount of computer resources needed for such an analysis.

For example, a RANROT type A system with j=1, k=4, b=7, r=4 has 24 cycles of the following
lengths: 1, 5, 9, 11, 14, 21, 129, 6576, 8854, 16124, 17689, 135756, 310417, 392239, 432099,
488483, 1126126, 1355840, 1965955, 4576377, 7402465, 8393724, 57549556, 184256986.

A prime factorization of the cycle lengths showed that they share no more prime factors than
you would expect from completely random numbers. This, however, holds only when the design

rules in table 4 below are obeyed.

The number of cycles is always even. No explanation for this has been found. There appears to
be no simple rule for predicting which states belong to the same cycle.

Plotting the binary logarithms of the cycle lengths showed that these were uniformly distributed
in the interval between 0 and k·b, in accordance with equation (14).

The average number of cycles was close to 2loglog)1(log eee bkmm ⋅⋅=≈+ . Comparisons of
the measured numbers of cycles to the theoretical values are listed in table 2 below for different
types of RANROT generators.

The experimental measurement of the average number of cycles was somewhat problematic.
All RANROT generators of the types defined above have one cycle of length 1, which is the
trivial case where all bits in the system are 0. It is doubtful whether this cycle should be included
in the count. However, the measured values fits the theoretical values best if this trivial cycle is
included. Another problem is that the number of possible parameter sets that fit the design rules
in table 4 is rather limited when the size of the system cannot exceed m = 232. Minor rule
violations were unavoidable, with the result that some systems showed a few small extra cycles
of the same length. It was difficult to decide whether these extra cycles should be regarded as
caused by some undesired symmetry in the system or by mere coincidence. Such systems
were manually excluded from the statistics, which inevitably causes a systematic error. A
special version of the RANROT generator was designed in order to measure the average
number of cycles without these problems. This is called type BX:

RANROT type BX:

Xn = (((Xn-j ⊕ H) rotr r1) + (Xn-k rotr r2)) mod 2b (27)

The ⊕ operator is a bitwise exclusive-or, inverting one or more bits when H ≠ 0. Inverting bits
prevents the trivial cycle of length one for the state of all-zeroes in the state descriptor. The H
parameter can be varied arbitrarily which gives more possible parameter sets for testing.

RANROT type number of tests m cycles/loge m std.dev.

A 114 220-232 0.999 0.25

B 60 220-232 0.977 0.22

B3 62 230 1.035 0.21

BX 2033 225-228 1.0052 0.22

W 96 230 1.049* 0.23

Table 2. experimental values of mean number of cycles.

*) statistically significant at 5%

The experimental values agree well with the theory. The differences from the theoretical values
predicted by equation (12) are small, and not statistically significant (t-test, 2-tailed), except for
type W. The differences from the alternative approximation (13) is highly significant for type BX.
The discrepancy for type W is ascribed to violations of the design rules, which were more
serious in this case.

Randomness

All types of RANROT generators have been tested with several experimental tests including the
fifteen tests in the DIEHARD battery of tests published by George Marsaglia (1997). They have
passed all tests when the design rules in table 4 were obeyed, and even passed most tests
when these rules were grossly violated.
The most important theoretical test is the spectral test (Knuth 1998), which is a test of a possible
lattice structure in t-dimensional space of points
Pn = (un-t+1, un-t+2, ... , un). (28)
Where the normalized output
ui = 2-bXi ∈ [0,1). (29)
The RANROT generators have no lattice structure for Pn with dimensionality t ≤ k, because all
sequences of k consecutive numbers are possible except for the sequence of k zeroes. A lattice
structure can only be found for dimensionality t > k, or for points of non-consecutive numbers.
The worst case for RANROT types A, B and W is the structure of points formed from non-
consecutive numbers Qn = (un-k, un-j, un) in 3-dimensional space.
I will now analyze the lattice structure of Qn for RANROT type A.
In order to translate the rotr function into manageable functions, we first define
un-j + un-k = 2-bya + 2r-byb + yc (30)
where ya is the least significant r bits of the sum, yb is the next b-r bits, and yc is the carry bit
from the addition:
ya = (2b(un-j + un-k)) mod 2r (31)
yb = 2b-r(un-j + un-k) mod 2b-r (32)
yc = un-j + un-k (33)
Now the formula (16) for RANROT type A can be expressed as
un = 2-rya + 2-byb (34)
When ya and yc are kept constant, we can isolate yb from (30) and insert in (34):
un = 2-run-j + 2-run-k + (2-r-2-b-r)ya – 2-ryc (35)
which defines a plane perpendicular to the vector (2-r,2-r,-1).
For yc=0, the 2r possible values of ya give 2r parallel planes with the distance

12
)21(2

211
+

−=
−

−−

r

br

δ (36)

These planes are cut off to the half of the unit cube that is defined by un-j + un-k < 1. In the other
half of the unit cube, where yc = 1, we have a similar set of 2r parallel planes with the same

distance. The second plane of the second set is almost coincident with the extension of the first
plane of the first set, except for the tiny offset of

12
2

21 +
=

−

−−

r

br

ε . (37)

Ignoring this offset, we can describe the lattice structure as 2r+1 parallel planes with the
distance approximately 2-r.
When yb and yc are kept constant, in stead of ya and yc, we get a different lattice structure:
un = 2b-run-j + 2b-run-k + (2-b-1)yb – 2b-ryc (38)
which defines a plane perpendicular to the vector (2b-r,2b-r,-1).
For yc=0, the 2b-r possible values of yb give 2b-r parallel planes with the distance

12
21

)(212
+

−=
−+

−

rb

b

δ (39)

For yc=1, we get a similar set of parallel planes. The distance between the last plane in the first
set and the first plane in the second set is slightly more than δ2:

12
221

)(213
+

+−=
−+

−−

rb

rb

δ (40)

Combining these two sets of planes, we have 2b-r+1 parallel planes with distance approximately
2r-b-½.
The lattice structure defined by (35) will be dominating when r is small, while the lattice structure
defined by (38) will dominate when r is big, i.e. close to b. The best resolution is obtained for
intermediate values of r, where the points Qn will lie on the lines defined by the intersections of
the planes of the two lattice structures.
The special case r = 0 defines the well-known lagged Fibonacci or ADDGEN generator (Knuth

1998). According to (36) and (37) it has two parallel planes with the distance 3/1 , in
accordance with the findings of L’Ecuyer (1997). Interestingly, the same result is obtained by
setting r = b in equation (40).

The RANROT generators of the other types have been analyzed in a similar way. The results
are summarized in table 3. All of the lattices have slight deviations from the nice pattern of
exactly equidistant planes. The distance between a corner and the nearest plane is always less
than or equal to the distance between planes.

RANROT

type
conditions number of planes or

hyperplanes1)
perpendicular to max distance between planes

or hyperplanes
r1 small 2r+1 (1, 1, -2r) ≤ 2-r A

r1 big 21+b-r (1, 1, -2r-b) ≤ 2r-b-½(1+2-r)
r1, r2 small 2rmax+2 r1-r2 (2-r2, 2-r1, -1) ≤ 2-rmax
r1 small r2

big
2b+r1-r2 + 2r1 (2b-r2, 2-r1, -1) ≤ 2r2-r1-b

r1 big r2
small

2b+r2-r1 + 2r2 (2-r2, 2b-r1, -1) ≤ 2r1-r2-b

B

r1, r2 big 2b-r1 + 2b-r2+1 (2b-r2, 2b-r1, -1) ≤ 2rmin-b
r1, r2, r3

small
2rmax ⋅

(1+2-r1+2-r2+2-r3)-1
(2-r3,2-r2,2-r1,-1) ≤ 2-rmax B3

r1, r2, r3 big 2b-r1 + 2b-r2 + 2b-r3 +1 (2b-r3,2b-r2,2b-r1,-1) ≤ 2rmin-b
r1, r3 small ≈ 2b/2+|r1-r3| + 2b/2

+2max(r1,r3)
(2b/2-r1, 2b/2-r3, -1) ≈ 2-b/2-|r1-r3|

r1 small r3
big

≈ 2b+r1-r3 + 2b/2 + 2r1 (2b/2-r1, 2b-r3, -1) ≈ 2r3-r1-b

r1 big r3
small

≈ 2b+r3-r1 + 2b/2 + 2r3 (2b-r1, 2b/2-r3, -1) ≈ 2r1-r3-b

r1, r3 big ≈ 2b-r1 + 2b-r3 + 1 (2b-r1, 2b-r3, -1) ≈ 2-b+max(r1,r3)
r2, r4 small ≈ 2b/2+max(r2,r4) +

2|r2-r4| + 1
(2-b/2-r2, 2-b/2-r4, -1) ≈ 2-b/2-max(r2,r4)

r2 small r4
big

≈ 2b/2+r2 +2b/2+r2-r4 +1 (2-b/2-r2, 2-r4, -1) ≈ 2-b/2-r2

r2 big r4
small

≈ 2b/2+r4 +2b/2+r4-r2 +1 (2-r2, 2-b/2-r4, -1) ≈ 2-b/2-r4

W

(r2, r4 big) ≈ 2b/2 + 2b/2-r2+2b/2-r4 (2-r2, 2-r4, -1) ≈ 2-b/2
table 3. Worst case lattice structure of points defined by non-consecutive random numbers.
rmin and rmax are the smallest and the biggest of the r’s respectively.
1) Almost coincident planes are counted as one.

Choice of parameters
While the choice of parameters for the RANROT generators is not very critical, certain rules
should be observed for best performance. Most importantly, all bits in the state buffer should be
interdependent. For this reason, j and k must be relatively prime. If j and k (and i for type B3)
share a factor p, then the system can be split into p independent systems. For the same reason,
k – j must be odd in type W.

It is clear from the way a binary addition is implemented, that there is a flow of information from
the low bits to the high bits through the carries, but no flow of information the other way. This
problem is seen in the lagged Fibonacci generator, where the least significant bit of all words in
the buffer form an independent system. It has been proposed to solve this problem by adding
the carry from the most significant bit position to the least significant bit in the next addition in
the so-called ACARRY generator (Marsaglia, et. al. 1990). This mechanism improves the cycle
length but hardly the randomness. The rotation of bits in the RANROT generators serves the
same purpose of providing a flow of information from the high bits to the low bits, but at the
same time improves the lattice structure. At least one of the r’s must be non-zero in order to
make all bit positions interdependent. The lattice structure described above is rather coarse if
the r’s are too small (i.e. close to zero) or too big (i.e. close to b, or for type W: b/2). The finest
lattice structure is obtained for values or r near b/2 for type A, near b/3 and 2b/3 respectively for
type B, and near b/4, b/2, 3b/4 for type B3.

The biggest theoretical problem relating to the choice of parameters is to make sure that the
distribution of cycle lengths is random, in accordance with (14). If all r’s are zero, then we have
the situation of the lagged Fibonacci or ADDGEN generator, which has many relatively short
cycles with commensurable lengths. The maximum cycle length in this case is (2k-1)2b-1 for
optimal choices of j and k (Knuth 1998, Lidl & Niederreiter 1986). A random distribution of cycle
lengths is usually obtained if at least one of the r’s is non-zero. But for certain unlucky choices of
r’s you may see certain regularities or symmetries that cause the system to have a number of
small cycles with the same or commensurable lengths, while the remaining cycles have the
desired distribution. For example, a RANROT type A with r =1 has 2b-1 cycles of length 1
because any state with all X’es equal and the most significant bit=0 will be transformed into
itself. Several rules of thumb have been developed to avoid such symmetries. These rules are
summarized in table 4. Unfortunately, there is no known design principle which can provide an
absolute guarantee that the cycle lengths have the distribution (14). Therefore, a self test as
described above is needed for detecting the (very unlikely) situation of getting into a cycle of
insufficient length. (This has never happened during several years of extensive use).

For optimal performance, the parameters should be chosen according to the following rules:

RANROT type

rule #

rule A B B3 W

1 j, k (and i) have no
common factor

+++ +++ +++ +++

2 1 < j < k-1 ++ + + +

3 k-j odd - - - +++

4 one r ≠ 0 +++ +++ +++ ++

5 all r’s ≠ 0 +++ ++ + -

6 r’s different n. a. ++ ++ ++

7 r > 1 +++ ++ + +

8 r relatively prime to b + + + +

9 k relatively prime to b + + + +

Explanation of symbols:

+++ important rule

++ some small cycles may occur if not obeyed

+ minor importance

- no significance

Table 4. Design rules for RANROT generators.
All rules applied to an r also applies to the corresponding b-r (for type W: b/2 – r).

If the desired resolution is higher than the microprocessor word size, then you may use an
implementation like type W, where parts of the bitstring are rotated separately, because it is
faster to rotate two words than to rotate one double-word. You may let r3 and r4 be zero for the
sake of speed.

The value of k determines the size of the state buffer. While a high value of k improves
randomness and cycle length, a moderate value between 10 and 20 will generally suffice for
RANROT generators. An excessive value of k will take up unnecessary space in the memory
cache, which will slow down execution in applications that exhaust the cache.

History and speed considerations
Treatises on random number generators traditionally pay little or no attention to speed, although

speed can be a quite important factor in Monte Carlo applications.

The RANROT generator is designed to be a fast random number generator. I invented this
generator several years ago when computers were not as fast as today and when most random
number generators were either quite bad or quite slow. I needed a random number generator
with good randomness and high speed. Since multiplication and especially division are quite
time-consuming instructions, I was left with additive generators. I searched for other
microprocessor instructions that provided a good shuffling of bits and at the same time were
fast. The bit rotate instruction turned out to be the best candidate for this purpose. The result
was the fast RANROT generator, which turned out to have a quite chaotic behavior.

The problem that the cycle length is unknown and random was solved by means of the self-test.
This relieved some serious design constraints and allowed me to optimize for speed rather than
for mathematical tractability.

The self-test is implemented by saving a copy of the initial contents of the state buffer. After
each execution of the algorithm, the first word of the state buffer is compared to the copy. (Note
that the first word of the circular buffer is the one pointed to by the n-k pointer, not the one that
physically comes first). The rest of the buffer only has to be compared in the rare case that the
first word is matching. The self-test therefore takes only one CPU clock cycle extra.

Most applications require a floating point output un in the interval [0,1). The conversion of the
integer Xn to a floating-point value un has traditionally been done simply by multiplication with
2-b. This involves the slow intermediate steps of converting the unsigned b-bit integer to a
signed integer with more than b bits, and converting this signed integer to a normalized floating-
point number. A much faster method can be implemented by manipulating the bits of a floating-
point representation as follows: Set the binary exponent to 0 (+ bias) and the fraction part of the
significand to random bits. This will generate a floating-point number with uniform distribution in
the interval [1,2). A normalized floating-point number in the interval [0,1) is then obtained by
subtracting 1. The binary representation of floating-point numbers usually follows the IEEE-754
standard (IEEE Computer Society 1985). If portability is important then you have to choose a
floating-point precision that is available on all computers.

The optimized code for a RANROT type W executes in just 18 clock cycles on an Intel Pentium
II or III microprocessor, including the time required for the self-test and conversion to floating
point. This means that it can produce more than 50 million floating point random numbers per
second with 63 bits resolution on a 1GHz microprocessor (Fog 2001).

New generations of microprocessors can do multiplications in a pipelined manner. This means
that it can start a new multiplication before the previous one has finished (Fog 2000). This
makes multiplicative random number generators more attractive, although they still take more
time than the RANROT.

A few years ago, the so-called Mersenne Twister was proposed as a very good and fast random
number generator (Matsumoto & Nishimura 1998). Unfortunately, the Mersenne Twister uses
quite a lot of RAM memory. The effect of memory use on speed does not show in a simple
speed test that just calls the generator repeatedly, but an excessive memory use may slow
down execution significantly in larger applications that exhaust the memory cache in the
microprocessor.

Conclusion
It is possible to make a good pseudo-random number generator with unknown cycle length
when a self-test provides the desired guarantee against repeated states. This self-test can be
very fast when the state transition function is invertible.

The traditional requirement that cycle lengths can be calculated theoretically has been avoided
by introducing the self-test. This gives a freedom of design that makes it possible to optimize for
speed and randomness and to take hardware-specific considerations.

The RANROT generators tested here are faster than other generators of similar quality, and
they have performed very well in both experimental and theoretical tests for randomness.

Under ideal conditions, the distribution of cycle lengths is expected to be random, according to
equation (14), and the average number of cycles is close to loge(m). This ideal behavior is
approximated quite well by all variants of the RANROT generators tested here, except for the
most unfavorable choices of parameters. The general principles described in this article may be
applied to other designs as well.

For the most demanding applications, you may combine the output of two different generators,
one traditional and one with random cycle length, in order to get the best of both worlds.

Examples of implementation in the C++ and assembly languages are given by Fog (2001).

References
Blum, L, Blum, M, and Schub M. 1986: A simple unpredictable pseudo-random number
generator. SIAM Journal of Computing. vol. 15, no. 2, pp. 364-383.

Cernák, J. 1996. Digital generators of chaos. Physics Letters A. vol. 214, pp. 151-160.

Couture, R and L’Ecuyer, P. 1997: Distribution Properties of Multiply-with-Carry Random
Number Generators. Mathematics of Computation, vol. 66, p. 591.

Couture, R and L’Ecuyer, P. 1998. Guest Editors’ Introduction. ACM transactions on Modeling
and Computer Simulation. vol. 8, no. 1, pp. 1-2.

Entacher, Karl. 1998. Bad Subsequences of Well-Known Linear Congruential Pseudorandom
Number Generators. ACM transactions on Modeling and Computer Simulation. vol. 8, no. 1, pp.
61-70.

Fishman, George S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New York:
Springer.

Fog, A. 2000. How to optimize for the Pentium family of microprocessors.
http://www.agner.org/assem. [A copy is archived at the Royal Library Copenhagen]

Fog, A. 2001. Pseudo random number generators. http://www.agner.org/random.

Harris, B. 1960. Probability distributions related to random mappings. Annals of Mathematical
Statistics. vol. 31, pp. 1045-1062.

IEEE Computer Society 1985: IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std 754-1985).

James, F. 1990. A review of pseudorandom number generators. Computer Physics
Communications. vol. 60, pp. 329-344.

Knuth, D. E. 1998. The art of computer programming. vol. 2, 3rd ed. Addison-Wesley. Reading,
Mass.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of non-successive values produced by
some linear recurrences. INFORMS Journal of Computing vol. 9, no. 1, pp. 57-60.

L’Ecuyer, P. 1999. Good Parameters and Implementations for Combined Multiple Recursive
Random Number Generators. Operations Research, vol 47, no. 1. pp. 159-164.

Lidl, R. and Niederreiter, H. 1986. Introduction to finite fields and their applications. Cambridge
University Press.

Marsaglia, G. 1997. DIEHARD. http://stat.fsu.edu/~geo/diehard.html or
http://www.cs.hku.hk/internet/randomCD.html.

Marsaglia, G., Narasimhan, B., and Zaman, A. 1990. A random number generator for PC's.
Computer Physics Communications. vol. 60, p. 345.

Matsumoto, M. and Nishimura, T. 1998. Mersenne Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator. ACM Trans. Model. Comput. Simul. vol. 8, no. 1,
pp. 31-42.

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods.
Philadelphia: Society for Industrial and Applied Mathematics.

Schuster, H. G. 1995. Deterministic Chaos: An Introduction. 3’rd ed. VCH. Weinheim, Germany.

Waelbroeck, H. & Zertuche, F. (1999). Discrete Chaos. J. Phys. A. vol 32, no. 1, pp. 175-189.

	Chaotic Random Number Generators with Random Cycle Lengths
	Abstract
	Introduction
	Cycle lengths in random maps
	RANROT generators
	Bifurcation
	Test of RANROT generators
	Cycle lengths
	Randomness

	Choice of parameters
	History and speed considerations
	Conclusion
	References

