
Description of C++ examples in cppexamples.zip
By Agner Fog, © 2008-2022.

Available at www.agner.org/optimize/cppexamples.zip.

Discussed in www.agner.org/optimize/optimizing_cpp.pdf.

Overview of container classes and templates

Container
M

a
x
im

u
m

 size se
t a

t ru
n

tim
e

C
a
n

 g
ro

w

C
a
n

 rem
o
v
e o

b
jects

C
a
n

 in
sert/d

elete a
t ra

n
d

o
m

 p
o
sitio

n
s

E
lem

en
ts ca

n
 h

a
v
e co

n
stru

cto
rs/d

estru
cto

rs

C
a
n

 so
rt elem

en
ts

C
a
n

 sea
rch

 fo
r elem

en
ts

R
a
n

d
o
m

 a
ccess b

y
 in

d
ex

A
llo

w
s F

irst-In
-F

irst-O
u

t a
ccess

A
llo

w
s F

irst-In
-L

a
st-O

u
t a

ccess

C
a
n

 co
n

ta
in

 o
b

jects o
f m

ix
ed

 ty
p

e

C
a
n

 co
n

ta
in

 strin
g
s o

f d
iffer

en
t len

g
th

s

M
em

o
ry

 is co
n

tig
u

o
u

s Comments

In cppexamples.zip:

SafeArray - - - - - - - X - - - - X Linear array

FIFOlist - X X - - - - - X - - - X Circular array

FILOlist - X X - - - - - - X - - X Stack

SortedList - X X X - X X X - - - - X Sorted list

DynamicArray X X X - - - - X - X - - X Linear array

DynamicQueue X X X - - - - X X - - - X Circular array

MixedPool X X X - - - - X - - X - X Memory pool

StringPoolS X X X - - - - X - - - X X String memory pool

StringPoolL X X X - - - - X - - - X X String memory pool

StringPoolW X X X - - - - X - - - X X String memory pool

Standard templates:

STL vector X X - X X - - X - X - - X Linear array

STL list X X X X X X - - X X - - - Doubly linked list

STL deque X X X X X - - - X X - - - Double ended queue

STL set, multiset X X X X X X X X - - - - - Binary tree

STL map, multimap X X X X X X X X - - - - - Binary tree

STL hash_map,

unordered_map

X X X X X - X X - - - - - Hash map

http://www.agner.org/optimize/cppexamples.zip
http://www.agner.org/optimize/optimizing_cpp.pdf

The above table shows an overview of container classes provided in cppexamples.zip as well as

standard C++ containers (previously known as the Standard Template Library, STL) for

comparison.

Explanation of the table headings:

Maximum size set at runtime:

The maximum size of the container, i.e. the number of objects or elements it can contain, does not

have to be known at compile time but can be set at runtime depending on the data.

Can grow:

The size of the container can be increased at any time. The final size does not have to be known

before the first element is added.

Can remove objects:

Objects can be removed from the container.

Can insert/delete at random positions:

Objects can be added or removed not only at the end of a list, but at any position in the sequence.

Elements can have constructors/destructors:

Can contain objects of a class that has non-default constructors, copy constructors, move

constructors, or destructors. A '-' in this column means that any constructors/destructors of the

objects stored are not called correctly when individual objects are moved, copied or destroyed. The

container itself does have constructor and destructor.

Can sort elements:

Elements added in random order can be sorted.

Can search for elements:

A search feature makes it possible to find an object with a particular value or key without looking

through the entire list.

Random access by index:

Each element can be accessed by a unique index or key, typically of the form list[i].

Allows First-In-First-Out access:

Can be used as a queue with First-In-First-Out access.

Allows First-In-Last-Out access:

Can be used as a stack with First-In-Last-Out access.

Can contain objects of mixed type:

Can be used as a memory pool storing objects of different types in the same memory block.

Can contain strings of different lengths:

Useful for storing text strings.

http://www.agner.org/optimize/cppexamples.zip

Memory is contiguous:

Objects are stored contiguously in one big memory block rather than being spread among multiple

memory blocks. This can reduce memory fragmentation and heap overhead, and improve cache

efficiency.

Explanation of each container class or template:

SafeArray:

A simple array with bounds checking. Size defined at compile time.

FIFOlist:

A First-In-First-Out queue. Size defined at compile time.

FILOlist:

A First-In-Last-Out stack. Size defined at compile time.

SortedList:

A list that is kept sorted at all times. Objects can be added or removed in random order. Objects can

be found by binary search. Size defined at compile time. This is efficient for small lists but

inefficient for large lists. Use a binary tree or hash map instead if the list is very large.

DynamicArray:

A linear array that can be resized at any time. Can also be used as First-In-Last-Out stack.

DynamicQueue:

A First-In-First-Out queue. Size defined at runtime.

MixedPool:

A memory pool for storing objects of different types in the same contiguous memory block. This

can reduce memory fragmentation and heap overhead and improve cache efficiency. Can also be

used for reading and writing binary files containing mixed data structures.

StringPoolS:

A memory pool for storing zero-terminated text strings (ASCII or UTF-8) together in the same

contiguous memory block. Includes various string manipulation functions.

StringPoolL:

Same as StringPoolS. The length of each string is stored in order to make string manipulation faster.

StringPoolW:

Same as StringPoolS, but for 16-bit characters (wchar_t).

Further container class templates suitable for handling vectors and matrixes are provided at

https://github.com/vectorclass/add-on/tree/master/containers

https://github.com/vectorclass/add-on/tree/master/containers

Why not use standard templates?

The standard C++ container class templates (previously known as the standard template library,

STL) are certainly useful for many programmers. The advantages are that they are flexible,

standardized, and well tested. If a container fulfills your needs then use it!

However, the standard containers are designed for generality and flexibility, while execution speed,

heap efficiency, cache efficiency and code size have got low priority. The container classes and

templates in cppexamples.zip, on the contrary, are designed with more focus on code efficiency. In

particular, the number of memory allocations and re-allocations is kept at a minimum by keeping

multiple objects together in the same memory pool and by growing the memory blocks by large

amounts when they are exhausted, where the standard containers typically grow memory blocks in

smaller steps.

The code size of each example is kept so small that a proficient C++ programmer will be able to

understand it and to modify it if desired.

The container classes and templates provided here in cppexamples.zip can be used instead of

standard containers when fast execution, small code, and efficient caching are of prime importance.

These containers do not use structured exception handling because general performance can be

improved by compiling without support for exception handling. Instead, they write error messages

to the standard error output. You may modify this behavior to provide a pop-up box that fits a

specific graphical user interface or a general error handling strategy or your application.

All code examples are published under the Gnu General Public License.

http://www.agner.org/optimize/cppexamples.zip
http://www.agner.org/optimize/cppexamples.zip
http://www.gnu.org/copyleft/gpl.html

	Description of C++ examples in cppexamples.zip
	Overview of container classes and templates
	Explanation of the table headings:
	Explanation of each container class or template:
	Why not use standard templates?

