ForwardCom: An open-standard instruction set for
high-performance microprocessors

Agner Fog

June 25, 2016

Contents

[2.3 _Register set| . .
.4 Vector support| .
[2’5 Vector Toops| . .

I3__Instruction formats|

3.1 Formats and templates| o000

3.2 Coding of operands|

Pointer registe

.
Offsets|

:
[3.3 _Coding of masks|

4 Format for jump, call and branch instructions|
35 Assignment of opcodes|

14__Instruction lists| 34
4.1 List of multi-format instructions| 39
4.2 List of tiny instructions| Lo 40
4.3 List of single-format instructions| 41
[4.4 Description of instructions| 50

[Multi-format instructions] 50
|Tiny format instructions|. 54
Single-format instructions that use general purpose registers and spe- |

| cial registers| Lo 55

|Single-format instructions with g. p. register input and vector regis- |

| ter output, orviceversal. 58

[Other single-format instructions that may change the length of a vec- |

[tod 60

|Single-format instructions that can move data horizontally from one |

| vector element to anothed L. 61

[Other single-format vector instructions| 63
[#5"Common operations that have no dedicated instruction] 66
46 Unused instructions| 69

[5__Other implementation details| 71
BI Endianness 71
5.2 Implementation of call stack| 71
5.3 Floating point errors and exceptions| 74
5.4 Detecting integer overflow| L. 75
5.5 Multithreading|o 76
[B:6 Security features|. 77

|How to improve the security of applications and systems| 77

|6 Programmable application-specific_instructions| 80

[7—Microarchitecture and pipeline design| 81

8 Memory model| 84
8.1 Thread memory protection| 86
8.2 Memory management| 86

[0 System programming] 90
9.1 Memory map|. 91
02 Callstackl 92
[9.3 System calls and system functions| 92
........................... 94

.5 rror message handling| 94

|10 Standardization of ABI and software ecosystem|

110.1 Compiler support|
|110.2 Binary data representation|

|10.3 Further conventions for object-oriented languages

[10.4 Function calling convention|

0.5 Register usage convention

IIUG Name mangling for tunction over oaalné]

|110.7 Binary format for object files and executable files|

[10.9 Library function dispatch system|

|1§.1§Ere§|ctln§ the stack 5|ze|

[T0.1TException handling, stack unrolling and debug information|

|110.12Assembly language syntax
11 Conclusionl

112 Revision history|

113 Copyright notice|

96
97
98
99
99
101
103
104
104
106
106
108
108

110
114

116

Chapter 1

Introduction

ForwardCom stands for Forward Compatible Computer system.

This document proposes a new open instruction set architecture designed for opti-
mal performance, flexibility and scalability. The ForwardCom project includes both
a new instruction set architecture and the corresponding ecosystem of software
standards, application binary interface (ABI), memory management, development
tools, library formats and system functions. This project illustrates the improve-
ments that can be obtained by a complete vertical redesign of hardware and soft-
ware based on an open, collaborative process.

This manual and all associated code is maintained at https://github.com/ForwardCom.

1.1 Highlights

e The ForwardCom instruction set is a compromise between the RISC and
CISC principles, combining the fast and streamlined decoding and pipeline
design of RISC systems with the compactness and more work-done-per-
instruction of CISC systems.

e The ForwardCom design is scalable to support small embedded systems as
well as large supercomputers and vector processors without losing binary
compatibility.

e Vector registers of variable length are provided for efficient handling of large
data sets.

e Array loops are implemented in a new flexible way that automatically uses
the maximum vector length supported by the microprocessor in all but the
last iteration of a loop. The last iteration automatically uses a vector length
that fits the remaining number of elements. No extra code is needed to
deal with remaining data and special cases. There is no need to compile the
code separately for different microprocessors with different vector lengths.

https://github.com/ForwardCom/

e No recompilation or update of software is needed when a new microproces-
sor with longer vector registers becomes available. The software is guaran-
teed to be forward compatible and take advantage of the longer vectors of
new microprocessor models.

e Strong security features are a fundamental part of the hardware and soft-
ware design.

e Memory management is simpler and more efficient than in traditional sys-
tems. Various techniques are used for avoiding memory fragmentation.
There is no memory paging and no translation lookaside buffer (TLB). In-
stead, there is a memory map with a limited number of sections with vari-
able size.

e There are no dynamic link libraries (DLLs) or shared objects. Instead, there
is only one type of function libraries that can be used for both static and
dynamic linking. Only the part of the library that is actually used is loaded
and linked. The library code is kept contiguous with the main program code
in almost all cases. It is possible to automatically choose between different
versions of a function or library at load time, based on the hardware config-
uration, operating system, or user interface framework.

e A mechanism for calculating the required stack size is provided. This can
prevent stack overflow in most cases without making the stack bigger than
necessary.

e A mechanism for optimal register allocation across program modules and
function libraries is provided. This makes it possible to keep most variables
in registers without spilling to memory. Vector registers can be saved in an
efficient way that stores only the part of the register that is actually used.

1.2 Background

An instruction set architecture is a standardized set of machine instructions that a
computer can run. There are many instruction set architectures in use.

Some commonly used instruction sets are poorly designed from the beginning.
These systems have been augmented many times with extensions and patches.
One of the worst cases is the widely used x86 instruction set and its many exten-
sions. The x86 instruction set is the result of a long history of short-sighted ex-
tensions and patches. The result of this development history is a very complicated
architecture with thousands of different instruction codes, which is very difficult
and costly to decode in a microprocessor. We need to learn from past mistakes

in order to make better choices when designing a new instruction set architecture
and the software that supports it.

The design should be based on an open process. Krste Asanovi¢ and David Pat-
terson have presented compelling arguments for why an open instruction set should

be preferred. Openness can be crucial for the success of a technical design. For
example, the original IBM PC in the early 1980's had an advantage over compet-
ing computers because the open architecture allowed other hardware and soft-
ware producers to make compatible equipment. IBM lost their market dominance
when they switched to the proprietary Micro Channel Architecture in 1987. The
successes of open source software are well known and need no further discussion
here. The only thing that is missing for a complete computer ecosystem based on
open standards is an open microprocessor architecture. This will open the market
also for smaller microprocessor producers and niche products.

This manual is based on discussions in various Internet forums. The specifications
are preliminary. The development of a new standard should benefit from a long
experimental phase, and it would be unwise to make it a fixed standard at this
initial stage.

1.3 Design goals

Previously published open instruction sets are suitable for small, cheap micropro-
cessors for embedded systems, system-on-a-chip designs, FPGA implementations
for scientific experiments, etc. The proposed ForwardCom architecture takes the
idea further and aims at a design that can outperform existing high-end proces-

sors.

The ForwardCom instruction set architecture is based on the following priorities:
e The instruction set should have a simple and consistent modular design.

e The instruction set should represent a suitable compromise between the
RISC principle that enables fast decoding, and the CISC principle that makes
it possible to do more work per instruction and to use the code cache more
efficiently.

e The design should be extensible so that new instructions and extensions can
be added in a consistent and predictable way.

e The design should be scalable so that it is suitable for both small computers
with on-chip RAM and large supercomputers with very long vectors.

e The design should be competitive over current commercial designs with a
focus on the high-end applications of tomorrow rather than the low-end
applications of yesterday.

e Vector support and other features that have proven essential for high per-
formance should be a fundamental part of the design, not a clumsy ap-
pendix.

e Security should be a fundamental part of the design, not patches added ad
hoc.

e The instruction set should be designed through an open process with the
participation of the international hardware and software community, similar
to the standardization work in other technical areas.

e The entire vertical design should be non-proprietary and allow anybody to
make compatible software, hardware and equipment for test, debugging and
emulation.

e Decisions about instructions and extensions should not be determined by
the short term marketing considerations of an oligopolistic microprocessor
industry but by the long term needs of the entire hardware and software
community and organizations.

e The design should allow the construction of forward compatible software
that will run optimally without recompilation on future processors with
larger vector registers.

e The design should allow application-specific extensions.

e The basic aspects of the ecosystem of ABI standard, assembler, compilers,
function libraries, system functions, user interface framework, etc. should
also be standardized for maximum compatibility.

A new instruction set will not easily get success on a commercial market, even if
it is better than legacy systems, because the market prefers backward compati-
bility with existing software and hardware. It is unlikely that the ForwardCom in-
struction set will make a successful commercial product within a short time frame,
but the discussion about what an ideal instruction set and software ecosystem
might look like is still useful. The ForwardCom project has already generated

so many important new ideas that it is worth pursuing further, even if we don't
know where this will end. The present work can be useful if the need for intro-
ducing a new instruction set architecture should arise for other reasons. It will be
particularly useful for large vector processors, for applications where security is im-
portant, for real-time operating systems, as well as for projects where the patent
and license restrictions of other architectures would be an obstacle.

The proposals in this document may also be useful as a source of inspiration and
for scientific experiments. Many of the ideas are independent of the design details
and may be implemented in existing systems.

1.4 Comparison with other open instruction sets

A few other open instruction sets have been proposed, most notably RISC-V and
OpenRISC. Both are pure RISC designs with mostly fixed 32-bit instruction word
sizes. These instruction sets are suitable for small systems where the use of silicon
space is economized, but they are not designed for high performance superscalar
processors and they do not focus on details that are critical for achieving maxi-
mum performance in bigger systems. The present proposal is thought as the next

step towards making an open instruction set that is actually more efficient than
the best commercial instruction sets today.

A typical RISC design with the instruction size limited to 32 bits leaves only lim-
ited space for immediate constants and addresses of memory operands. A medium
size program will need 32-bit relative addresses of static memory operands to
avoid overflow during the relocation process in the linker. A 32-bit relative ad-
dress requires several instructions in the pure RISC designs. For example, to add

a memory operand to the value of a register, you need five instructions in a RISC
design with only 32-bit instruction words: (1) load the lower part of the 32-bit ad-
dress offset, (2) add the upper part of the 32-bit address offset, (3) add the ref-
erence pointer or instruction pointer to this value, (4) read the memory operand
from the calculated address, (5) do the desired addition. The ForwardCom design
does all this in a single instruction with double word size. The speed advantage

is obvious. The address calculation, load, and execution are done at each their
stage in the pipeline in order to achieve a smooth throughput of one instruction
per clock cycle in each pipeline lane.

Another important difference is that the previous RISC designs have limited sup-
port for vector operations. The ForwardCom design introduces a new system of
variable-length vector registers that is more efficient and flexible than the best
current commercial designs. Efficient vector operations are essential for obtaining
maximum performance, and this has been an important priority in the design of
the ForwardCom architecture proposed here.

1.5 References and links

e Krste Asanovi¢ and David Patterson: “The Case for Open Instruction Sets.
Open ISA Would Enable Free Competition in Processor Design”. Micropro-
cessor Report, August 18, 2014.
www.linleygroup.com /mpr/article.php?id=11267

e RISC-V: The Free and Open RISC Instruction Set Architecture [riscv.org
e OpenRISC: lopenrisc.io
e Open Cores: lopencores.org

e Agner Fog: Proposal for an ideal extensible instruction set, 2015. A blog
discussion thread that initiated the ForwardCom project.
www.agner.org/optimize/blog/read.php?i=421

e Agner Fog: Stop the instruction set war, 2009. Blog post about the prob-
lems with the x86 instruction set.
www.agner.org/optimize/blog/read.php?i=25

e Darek Mihocka: Standard Need To Be Forward Looking, 2007. Blog post
criticizing the x86 instruction set standard.
www.emulators.com /docs/nx02_standards.htm. See also the following pages.

http://www.linleygroup.com/mpr/article.php?id=11267
http://riscv.org
http://openrisc.io
http://opencores.org
http://www.agner.org/optimize/blog/read.php?i=421
http://www.agner.org/optimize/blog/read.php?i=25
http://www.emulators.com/docs/nx02_standards.htm

Chapter 2

Basic architecture

This chapter gives an overview of the most important features of the ForwardCom
instruction set architecture. Details are given in the subsequent chapters.

2.1 A fully orthogonal instruction set

The ForwardCom instruction set is fully orthogonal in all respects. The same in-
struction can use integer operands of all sizes and floating point operands of all
precisions. It can use register operands, memory operands or immediate operands.
It can use many different addressing modes. Instructions can be coded in short
forms with two operands where the same register is used for destination and source
operand, or longer forms with three operands. It can work with scalars or vec-
tors of any size. It can have predication or masks for conditional execution at the
vector element level, and it can have optional flag inputs for deciding rounding
mode, exception control and other details, where appropriate. Data constants of
all types can be included in the instructions and compressed in various ways to
reduce the instruction size.

Rationale

The orthogonality is implemented by a standardized modular design that makes
the hardware implementation simpler. It also makes compilation simpler and more
flexible and makes it easier for the compiler to convert linear code to vector code.

The support for immediate constants of all types is an improvement over current
systems. Most current systems store floating point constants in a data segment
and access them through a 32-bit address in the instruction code. This is a waste
of data cache space and causes many cache misses because the data are scattered
around in different sections. Replacing a 32-bit address with a 32-bit immediate
constant makes the code more efficient without increasing the code size. Exten-
sions to allow 64-bit immediate constants are possible at the cost of having in-

structions with triple length. However, this feature is not required in the basic
ForwardCom design because the priority has been to minimize the number of dif-
ferent instruction sizes for reasons explained below.

2.2 Instruction size

The ForwardCom instruction set uses a 32-bit word size for code. An instruction
can consist of one or two 32-bit words, with possible extensions to three or more
words. The code density can be increased by using tiny instructions of half the
size, but the 32-bit unit size is preserved by pairing tiny instructions two-by-two.
It is not possible to jump to the second tiny instruction in such a pair of tiny in-
structions. It is possible to add future extensions with instruction sizes of three or
more words.

Rationale

A CISC architecture with many different instruction sizes is inefficient in super-
scalar processors where we want to execute several instructions per clock cycle.
The decoding front end is often a bottleneck. You have to determine the length
of the first instruction before you know where the next instruction begins. The
“instruction length decoding” is a fundamentally serial process which makes it dif-
ficult to decode multiple instructions per clock cycle. Some microprocessors have
an extra “micro-operations cache” after the decoder in order to circumvent this
bottleneck.

Here, it is desired to have as few different instruction lengths as possible and to
make it easy to determine the length of each instruction. We want a small in-
struction size for the most common simple instructions, but we also need a larger
instruction size in order to accommodate things like a larger register set, instruc-
tions with multiple operands, vector operations with advanced features, 32-bit
address offsets, and large immediate constants. This proposal is a compromise
between code compactness, easy decoding, and space for advanced features.

2.3 Register set

There are 32 general purpose registers (r0-r31) of 64 bits each, and 32 vector
registers (v0—v31) of variable length. The maximum vector length is different for
different hardware implementations. The general purpose registers can be used for
integers of up to 64 bits as well as for pointers. The vector registers can be used
for scalars or vectors of integers and floating point numbers.

The following special registers are defined and visible at the application program
level. All have 64 bits:

e Instruction pointer (IP)

10

e Data section pointer (DATAP)

e Thread environment block pointer (THREADP)
e Stack pointer (SP)

e Numeric control register (NUMCONTR)

The stack pointer is identical to r31. The other special registers cannot be ac-
cessed as ordinary registers.

There is no dedicated flags register. Registers r1-r7 and v1-v7 can be used for
masks, predicates and floating point option flags to control attributes such as
rounding mode and exception control.

The unused part of a register is always set to zero. This means that integer op-
erations with an operand size smaller than 64 bits and vector operations with a
vector length smaller than the maximum will always set the unused bits of the
destination register to zero.

Rationale

The number of registers is a compromise between code density and flexibility. The
cost of spilling registers to memory is usually important only in the critical inner-
most loop, which is unlikely to need more than 32 registers.

We can avoid false dependencies on the previous value of a register by setting all
unused register bits to zero rather than leaving them unchanged. The hardware
can save power by disabling the unused parts of execution units and data buses.

A dedicated flags register is unfeasible for code that schedules multiple calcula-
tions in between each other and for vector code.

The reason for handling floating point scalars in the vector registers rather than

in separate registers is to make it easy for a compiler to convert scalar code in-
cluding function calls to vector code. Floating point code often contains calls to
mathematical library functions. If a library function has variable-length vectors as
input and output then the same function can be used for both scalars and vec-
tors, and the compiler can easily vectorize code that contains such library function
calls.

2.4 Vector support

A vector register can contain integers of 8, 16, 32, 64, and optionally 128 bits,
or floating point numbers of single, double, and optionally quadruple precision.
All elements of a vector must have the same type. The elements of a vector are
processed in parallel. For example, a vector addition will produce the sum of two
vectors in a single operation.

11

The vector registers have variable length. Each vector register has extra bits for
storing the length of the vector. The maximum vector length depends on the
hardware. For example, if the hardware supports a maximum vector length of 64
bytes and a particular application needs only 16 bytes, then the vector length is
set to 16.

Some instructions need to specify the length of a vector explicitly, for example
when reading a vector from memory. These instructions use a general purpose
register for specifying the vector length. The length is usually indicated as the
number of bytes, not the number of vector elements.

A special register gives information about the maximum vector length. The maxi-
mum length supported by the processor must be a power of 2. The actual length
specified does not have to be a power of 2. If the specified length is longer than
the maximum length, then the maximum length is used.

The contents of a vector register can arbitrarily be interpreted as any of the types
and element sizes supported. For example, the hardware does not prevent the ap-
plication of integer instructions on a vector that contains floating point data. It is
the responsibility of the programmer that the code makes sense.

2.5 Vector loops

A special addressing mode is provided to make vector loops more compact. It
uses a base pointer P and a negative index J and calculates the address of a mem-
ory operand as P-J, where P and J are general purpose registers. This makes

it possible to make a loop through an array as illustrated by the following pseu-
docode:

P = address of array

J = size of array (in bytes)

L = maximum vector length (depends on processor)

X = a vector register

P+4+=J; // point to end of array

while (J > 0) {
X = whatever_operation (X) ,[P-J],(vector length J)
J —=L;

}

This loop works in the following way: P points to the end of the array. J is the
remaining number of array elements; counting down until the loop is finished.
The loop reads one vector at a time from the array at the address [P-J]. J is
larger than the maximum vector length L in all but the last iteration of the loop.
This makes the processor use the maximum vector length. If the array size is not
divisible by the maximum vector length then the last iteration of the loop will use
a smaller vector length that fits the remaining number of elements. Obviously, the
loop can contain any number of vector read, vector write, and vector arithmetic

12

instructions, using the same principle.

This loop will work on different processors with different maximum vector lengths
without knowing the maximum vector length at compile time. Thus, the same
piece of software will work on different microprocessors with different vector lengths
without the need to compile separately for each microprocessor. A further advan-
tage is that no extra code is needed after the loop to handle remaining elements

in the case that the array size is not divisible by the vector length.

Rationale

Most current systems have fixed vector lengths. If different processors have differ-
ent vector lengths then you have to compile the code separately for each vector
length. Every time a new processor with longer vectors comes on the market, you
have to compile a new version of the code for the new vector length, using newly
defined extensions to the instruction set. It usually takes several years for the new
software to be developed and to penetrate the mainstream market. It is so costly
for software producers to develop and maintain different versions of their code for
each vector length that this is rarely done.

A further problem with current systems is that it is impossible to save a vector
register in a way that is guaranteed to be compatible with future processors with
longer vectors. This is no problem with the ForwardCom design because the vec-
tor length is stored in the vector register. Instructions are provided for saving and
restoring vectors of variable length and for storing only the part of a vector regis-
ter that is actually used.

The ForwardCom design makes it possible to take advantage of a new processor
with a longer vector registers immediately without recompiling the code. The loop
method described above makes this easy and very efficient. You don't need differ-
ent versions of the code for different processors.

It is possible to obtain the same effect without the special negative addressing
mode by inverting the sign of J and allowing a negative value in the register that
specifies the vector length while using the absolute value for the actual vector
length. This solution is less elegant and more confusing, but it may possibly be
included in the ForwardCom design by allowing negative values when specifying a
vector length.

Loop unrolling is generally not necessary. The loop overhead is already reduced
to a single instruction (subtract and jump if positive) and a superscalar proces-
sor will execute multiple iterations in parallel if dependency chains are not too
long. Loop unrolling with multiple accumulators may be useful for hiding a loop-
carried dependency. In this case, you will either insert a loop control instruction
after each section in the unrolled code or calculate the loop iteration count before
the loop.

The ForwardCom design has no practical limit to the vector length that a micro-
processor can support. A large microprocessor with very long vectors can be use-

13

ful for calculations with a high amount of data parallelism. Other solutions to
obtain high performance on parallel data processing have been discussed, such as
rolling register stacks and software pipelining, but it was concluded that long vec-
tors is the method that can be implemented most efficiently in the microprocessor
as well as in the compiler.

2.6 Maximum vector length

The maximum length of vector registers will be different for different processors.
The maximum length must be a power of 2. It can be as large as desired and
must be at least 16 bytes. Each instruction can use a smaller length, which does
not need to be a power of 2.

The maximum length may be different for different element sizes. For example,
the maximum length for 32-bit integers can be 32 bytes to contain eight inte-
gers, while the maximum length for 8-bit integers could be 16 bytes to contain 16
smaller numbers. However, the maximum length must be the same for different
types with the same element size. For example, the maximum length for double
precision floating point numbers must be the same as for 64-bit integers because
loops are likely to contain both types when integer vectors are used as masks for
floating point vectors. The maximum length for a 32-bit element size cannot be
less than for any other element size or operand type. This rule guarantees that it
is possible to save a complete vector using a 32-bit operand type.

The maximum vector length should generally be the same for all instructions for
the same data type, but there may be exceptions for instructions that are particu-
larly expensive to implement.

A few special registers give information about the maximum vector length sup-
ported by the hardware for each vector element size. It is possible for an appli-
cation program or the operating system to reduce the maximum vector length.
This can be useful if a smaller vector length is more appropriate for a particular
purpose.

It is also possible to increase the apparent maximum vector length for purposes of
emulation. Virtual vector registers that are bigger than what the hardware sup-
ports can be emulated through traps (synchronous interrupts) in order to verify
the functionality of a program on processors with a longer maximum vector length
than is currently available.

When an instruction specifies a longer vector than the maximum, then the max-
imum length is used unless the emulation of larger vectors is activated. This is
necessary for the efficient implementation of vector loops as described above on

page [12]

14

2.7 Instruction masks

Most instructions can have a mask register which can be used for conditional ex-
ecution and for specifying various options. Instructions with general purpose reg-
isters use one of the registers r1—r7 as a mask register or predicate. Bit 0 of the
mask register indicates whether the operation is executed or not. Bit 1 of the
mask register indicates whether the result should be zero or unchanged in case
the operation is not executed.

This mechanism can be vectorized. Instructions with vector registers use one of
the vector registers v1—v7 as mask register. The calculation of each vector ele-
ment is conditional on the corresponding element in the mask register.

Additional bits in the mask register are used for various options, overriding the
values in the numeric control register.

2.8 Addressing modes

All memory addressing is relative to some base pointer. Memory operands can be
addressed in one of the two general forms:

Address = BP + IXxSF
Address = BP + OS

Where BP is a 64-bit base pointer, IX is a 64-bit index register, SF is a scale fac-
tor, and OS is a direct offset. A base pointer is always present; the other elements
are optional.

The base pointer, BP, can be a general purpose register, or it can be the data
section pointer (DATAP), instruction pointer (IP) or stack pointer (SP).

The index register, IX, can be one of the registers r0—r30. A value of 31 means no
index register.

A limit can be applied to the index register in the form of a 16-bit unsigned in-
teger. A trap is generated if the index register is bigger than the limit in an un-
signed comparison.

The scale factor, SF, is equal to the operand size (in bytes) for scalar operands
and broadcasts. The scale factor is 1 for vector operands. A special addressing
mode with SF = -1 is also available, as explained on page

The offset, OS, is a sign-extended integer of 8, 16 or 32 bits. 8-bit offsets are
multiplied by the operand size. Offsets of 16 and 32 bits have no multiplier.

Support for addressing modes with both index and offset is optional.

Jumps and calls specify a target address relative to the instruction pointer. The
relative address is specified with a signed offset of 8, 16, 24, or 32 bits, multiplied
by the code word size which is 4. This will cover an address range of + 8 giga-
bytes with the 32-bit offset.

15

Rationale

A 64-bit address space is used. Relative addressing is used in order to avoid 64-bit
addresses in the instruction code. In the rare case that a 64-bit absolute address
is needed, it must be loaded into a register which is then used as a pointer.

Addressing with an index scaled by the operand size is useful for arrays. A limit
can be applied to the index so that array bounds can be checked without any ex-
tra instructions.

Addressing with a negative index is useful for the efficient implementation of vec-
tor loops described on page [12]

The addressing modes specified here will cover all common applications, including
arrays, vectors, structures, classes, and stack frames.

Support for addressing modes with both base pointer, index and direct offset is
optional because this requires two adders in the address-calculation stage in the
pipeline which might limit the maximum clock frequency.

16

Chapter 3

Instruction formats

3.1 Formats and templates

All instructions use one of the general format templates shown below (the most
significant bits are shown to the left). The basic layout of the 32-bit code word
is shown in template A. Template B, C and D are derived from template A by
replacing 8, 16 or 24 bits, respectively, with immediate data. Double-size and
triple-size instructions can be constructed by adding one or two 32-bit words to
one of these templates. For example, template A with an extra 32-bit word con-
taining data is called A2. Template E2 is an extension to template A where the
second code word contains an extra register field, extra opcode bits, option bits,
and data.

Some small, often-used instructions can be coded in a tiny format that uses a half
code word. Two such tiny instructions can be packed into a single code word,
using template T. An unpaired tiny instruction must be combined with a tiny-size
NOP to fill a whole code word.

Bits | 2 3 6 5 1 2 5 3 5
Field | IL Mode| OP1 | RD M OT | RS Mask | RT
Template A. Has three operand registers and a mask register.

Bits | 2 3 6 5 1 2 5 8
Field | IL Mode| OP1 | RD M oT RS IM1
Template B. Has two operand registers and an 8-bit immediate constant.

Bits | 2 3 6 5 8 8
Field | IL Mode| OP1 | RD IM2 IM1
Template C. Has one operand register two 8-bit immediate constants.

17

Bits

2

3

3

24

Field

IL

Mode

OP1

IM2

Template D. Has no register and a 24-bit immediate constant.

Bits | 2 3 6 5 1 2 5 3 5
Field | IL Mode| OP1 | RD M oT RS Mask | RT
Field OP2 OP3 | RU IM2

Template E2. Has 4 register operands, mask, a 16-bit immediate con-
stant and extra bits for opcode or options.

Bits | 2 3 6 5 1 2 5 3 5
Field | IL Mode| OP1 | RD M OT | RS Mask | RT
Field IM2

Template A2. 2 words. As A, with an extra 32-bit immediate constant.
Bits | 2 3 6 5 1 2 5 3 5
Field | IL Mode| OP1 | RD M OT | RS Mask | RT
Field IM2

Field IM3

Template A3. 3 words. As A, with two extra 32-bit immediate constants.

Bits | 2 3 6 5 1 2 5 8
Field | IL Mode| OP1 | RD M OT | RS IM1
Field IM2

Template B2. As B, with an extra 32-bit immediate constant.

Bits | 2 3 6 5 1 2 5 8
Field | IL Mode| OP1 | RD M OT | RS IM1
Field IM2

Field IM3

Template B3. As B, with two extra 32-bit immediate constants.

Bits | 2 3 6 5 8 8
Field | IL Mode| OP1 | RD IM2 IM1
Field IM3

Template C2. As C, with an extra 32-bit immediate constant.

18

Bits

4

14 14

Field

0111 Tiny instruction 2 Tiny instruction 1

Template T. 1 word containing two tiny instructions.

Bits

5 5

Field

OP1 RD

RS

Format for each tiny instruction

The meaning of each field is described in the following table.

Table 3.13: Fields in instruction templates

Field Meaning Values
name
IL Instruction | 0 or 1: 1 word = 32 bits
length 2: 2 words = 64 bits
3: 3 or more words
Mode Format Determines the format template and the use of each
field. Extended with the M bit when needed.
See details below.
OP1 Opcode Decides the operation, for example add or move.
oT Operand 0: 8 bit integer, OS = 1 byte
type and 1: 16 bit integer, OS = 2 bytes
size (OS) | 2: 32 bit integer, OS = 4 bytes
3: 64 bit integer, OS = 8 bytes
4: 128 bit integer, OS = 16 bytes (optional)
5: single precision float, OS = 4 bytes
6: double precision float, OS = 8 bytes
7: quadruple precision float, OS = 16 bytes (optional)
The OT field is extended with the M bit when needed.
RD Destination | r0 — r31 or vO — v31. Also used for first source operand if
register the instruction format does not specify enough operands.
RS Source r0 — r31 or vO — v31. Source register, pointer, index or
register vector length register.
RT Source r0 — r31 or vO — v31. Source register or pointer.
register
RU Source r0 — r31 or vO — v31. Source register.
register
Mask mask 0 means no mask. 1-7 means that a general purpose
register register or vector register is used for mask and option
bits.

19

M Operand Extends the mode field when bit 1 and bit 2 of Mode are
type or both zero (general purpose registers). Extends the OT
mode field otherwise (vector registers).

OP2 Opcode Opcode extension.

IM1, IM2, Immediate | 8, 16, 32 or 64 bits immediate operand or address offset

IM3 data or option bits. Adjacent IM fields can be merged.

OP3 Options Option bits, mode bits, or immediate data.

Instructions have several different formats, defined by the IL and mode bits, ac-
cording to the following table

Table 3.14: List of instruction formats

Format | IL Mode| Tem- | Use

name plate

0.0 0 0 A Three general purpose register operands (RD, RS,
RT).

0.1 0 1 B Two general purpose registers (RD, RS) and an 8-bit
immediate operand (IM1).

0.2 0 2 A Three vector register operands (RD, RS, RT).

0.3 0 3 B Two vector registers (RD, RS) and a broadcast 8-bit
immediate operand (IM1).

0.4 0 4 A One vector register (RD), a memory operand with
pointer (RT) and vector length specified by a general
purpose register (RS).

0.5 0 5 A One vector register (RD), a memory operand with
base pointer (RT). Negative index and vector length
are both specified by RS. This is used for vector loops
as explained on pagem

0.6 0 6 A One vector register (RD) and a scalar memory
operand with base pointer (RT) and index (RS)
scaled by operand size.

0.7 0 7 B One vector register (RD) and a scalar memory
operand with base pointer (RS) and 8-bit offset.

0.8 0 0 A One general purpose register (RD) and a memory

M=1 operand with base pointer (RT) and index (RS)
scaled by operand size.

0.9 0 1 B One general purpose register (RD) and a memory

M=1 operand with base pointer (RT) and 8-bit offset.

1.0 1 0 A Single-format instructions. Three general purpose
register operands.

1.1 1 1 C Single-format instructions. One general purpose
register and a 16-bit immediate operand.

1.2 1 2 A Single-format instructions. Three vector register
operands.

20

13

Single-format instructions. Two vector registers and
a broadcast8-bit immediate operand, or one vector
register and a broadcast 16-bit immediate operand.

1.4

Jump instructions with two register operands and 8
bit offset.

15

Jump instructions with one register operand, 8 bit
constant (IM2) and 8 bit offset (IM1), or no register
and 24 bit offset.

1.8

Single-format instructions. Two general purpose
registers and an 8-bit immediate operand.

Two tiny instructions.

A2

Two general purpose registers (RD, RS) and a mem-
ory operand with base (RT) and 32 bit offset (IM2).

21

A2

Three general purpose registers and a 32-bit immedi-
ate operand IM2.

2.2

A2

One vector register (RD) and a memory operand with
base (RT) and 32 bit offset (IM2). Vector length
specified by general purpose register RS.

2.3

A2

Three vector registers and a broadcast 32-bit immedi-
ate operand IM2.

240

E2

OP3=00xxxx. Two vector registers (RD, RU) and a
scalar memory operand with base (RT) and 16 bit
offset (IM2), broadcast to length (RS).

241

E2

OP3=01xxxx. Two vector registers (RD, RU) and a
memory operand with base (RT), 16 bit offset (IM2),
length (RS).

242

E2

OP3=10xxxx. Two vector registers (RD, RU) and
a memory operand with base (RT), negative index
(RS), and length (RS). Optional support for offset
IM2 # 0, otherwise IM2 = 0.

243

E2

OP3=11xxxx. Two vector registers (RD, RU) and a
scalar memory operand with base (RT), scaled index
(RS), and limit RS < IM2 (unsigned).

25

E2

Three vector registers (RD, RS, RT) and a broadcast
16-bit immediate integer IM2. IM2 is shifted left by
the 6-bit unsigned value of OP3, unless OP3 is used
for other purposes. RU is usually unused.

2.6

A2

Single-format instructions. Three general purpose
registers and a 32-bit immediate operand.

2.7

A2,
B2,
C2

Jump instructions (OP1 < 16). Single-format instruc-
tions. Three vector registers and a 32-bit immediate
operand.

21

2.8.0 2 0 E2 OP3=00xxxx. Three general purpose registers (RD,
M=1 RS, RU) and a memory operand with base (RT) and
16 bit offset (IM2).
2.8.1 2 0 E2 OP3=01xxxx. Two general purpose registers (RD,
M=1 RU) and a memory operand with base (RT), index
(RS), no scale. Optional support for offset IM2 # 0,
otherwise IM2 = 0.
2.8.2 2 0 E2 OP3=10xxxx. Two general purpose registers (RD,
M=1 RU) and a memory operand with base (RT), scaled
index (RS). Optional support for offset IM2 = 0,
otherwise IM2 = 0.
2.8.3 2 0 E2 OP3=11xxxx. Two general purpose registers (RD,
M=1 RU) and a memory operand with base (RT), scaled
index (RS), and limit RS < IM2 (unsigned).
2.9 2 1 E2 Three general purpose registers (RD, RS, RT) and a
M=1 16-bit immediate integer IM2. IM2 is shifted left by
the 6-bit unsigned value of OP3, unless OP3 is used
for other purposes. RU is usually unused.
3.0 3 0 A3, Jump instructions. Single-format instructions with
B3 general purpose register operands. Optional.
3.1 3 1 A3 Three general purpose registers and a 64-bit immedi-
ate operand. Optional.
3.2 3 2 A3 Single-format vector instructions. Optional.
3.3 3 3 A3 Three vector registers and a broadcast 64-bit immedi-
ate operand. Optional.
3.8 3 0 Currently unused.
M=1
4.x 3 4-7 Reserved for future 4-word instructions and longer.

3.2

Coding of operands

Operand type

The type and size of operands is determined by the OT field as indicated above.
The operand type is 64 bit integer (OS = 8) by default if there is no OT field.

Register type

The instructions can use either general purpose registers or vector registers. Gen-
eral purpose registers are used for source and destination operands and for masks
if mode is 0 or 1 (with M = 0 or 1). Vector registers are used for source and des-
tination operands and for masks if mode is 2-7. A value of zero in the mask field
indicates no mask and unconditional operation.

22

Pointer register

Instructions with a memory operand always use an address relative to a base
pointer. The base pointer can be a general purpose register, the data section
pointer, or the instruction pointer. The pointer is determined by the RS or RT
field. This field is interpreted as follows.

Instruction formats with no offset or 8-bit offset (0.4-0.9) can use any of the reg-
isters r0-r31 as base pointer. r31 is the stack pointer.

Instruction formats with 16-bit or 32-bit offset (2.0, 2.2, 2.4, 2.8) can use the
same registers, except r29 which is replaced by the data section pointer (DATAP),
and r30 which is replaced by the instruction pointer (IP). This also applies to for-
mats with an unused 16-bit offset (format 2.4.2 and 2.4.3).

Tiny instructions with a memory operand can use r0-r14 or the stack pointer
(r31) as pointer in the 4-bit RS field. A value of 15 in the RS field indicates the
stack pointer.

Index register

Instruction formats with an index can use r0-r30 as index. A value of 31 in the
index field (RS) means no index. The signed index is multiplied by the operand
size (OS) for formats 0.6, 0.8, 2.4.3, 2.8.2, 2.8.3; by 1 for format 2.8.1; or by -1
for format 0.5 and 2.4.2. The result is added to the value of the base pointer.

Offsets

Offsets can be 8, 16 or 32 bits. The value is sign-extended to 64 bits. An 8-bit
offset is multiplied by the operand size OS, as given by the OT field. An offset of
16 or 32 bits is not scaled. The result is added to the value of the base pointer.

Support for addressing modes with both index and offset is optional (format 2.4.2,
2.8.1, 2.8.3). If this kind of addressing involving two additions is not supported
then the offset in IM2 must be zero.

Limit on index

Formats 2.4.3 and 2.8.3 have a 16-bit limit on the index register. This is useful
for checking array limits. If the value of the index register, interpreted as un-
signed, is bigger than the unsigned limit then a trap is generated.

Vector length

The vector length of memory operands is specified by r0-r30 in the RS field for
formats 0.4, 0.5, 2.2, 2.4. A value of 31 in the RS field indicates a scalar with the
same length as the operand size (OS).

23

The value of the vector length register gives the vector length of the memory
operand in bytes (not the number of elements). If the value is bigger than the
maximum vector length then the maximum vector length is used. The value may
be zero. The behavior for negative values is implementation dependent: either
interpret the value as unsigned or use the absolute value.

The vector length must be a multiple of the operand size OS, as indicated by the
OT field. If the vector length is not a multiple of the operand size then the be-
havior of the partial vector element is implementation dependent.

The vector length for source operands in vector registers is saved in the register.

Combining vectors with different lengths

The vector length of the destination will be the same as the vector length of the
first source operand (even if the first source operand uses the RD field).

A consequence of this is that the length of the result is determined by the order
of the operands when two vectors of different lengths are combined.

If the source operands have different lengths then the lengths will be adjusted

as follows. If a vector source operand is too long then the extra elements will be
ignored. If a vector source operand is too short then the missing elements will be
zero.

A scalar memory operand (format 0.6 and 0.7) is not broadcast but treated as a
short vector. It is padded with zeroes to the vector length of the destination.

A broadcast memory operand (format 2.4.1) will use the vector length given by
the vector length register in the RS field.

A broadcast immediate operand will use the same vector length as the destina-
tion.

Immediate constants

Immediate constants can be 4, 8, 16, 32, and optionally 64 bits. Immediate fields
are generally aligned to natural addresses. They are interpreted as follows.

If OT specifies an integer type then the field is interpreted as an integer. If the
field is smaller than the operand size then it is sign-extended to the appropriate
size. If the field is larger than the operand size then the superfluous upper bits
are ignored. The truncation of a too large immediate operand will not trigger any
overflow condition.

If OT specifies a floating point type then the field is interpreted as follows. Imme-
diate fields smaller than 32 bits are interpreted as signed integers and converted
to floating point numbers of the desired precision. A 32-bit field is interpreted as
a single precision floating point number. It is converted to the desired precision if
necessary. A 64-bit field (if supported) is interpreted as a double precision floating

24

point number. A 64-bit field is not allowed with a single precision operand type.
A few optional instructions in format 1.3C have a half-precision floating point im-
mediate constant that is converted to a single or double precision scalar.

16-bit immediate constants in format 2.5 and 2.9 can be shifted left by the 6-bit
unsigned value of OP3 to give a 64-bit signed value. Any overflow beyond 64 bits
is ignored. The shift is done before any conversion to floating point. No shifting
is done if OP3 is used for other purposes.

An instruction can be made compact by using the smallest immediate field size
that fits the actual value of the constant.

Mask register

The 3-bit mask field indicates a mask register. Register rl-r7 is used if the des-
tination is a general purpose register. Vector register v1-v7 is used if the desti-
nation is a vector register. A value of zero in the mask field means no mask and
unconditional execution using the options specified in the numeric control regis-
ter.

If the mask is a vector register then it is interpreted as a vector with the same
element size as indicated by the OT field. Each element of the mask register is
applied to the corresponding element of the result.

The meanings of the flag bits are described in the next section.

3.3 Coding of masks

A mask register can be a general purpose register r1-r7 or a vector register v1-v7.
A value of zero in the mask field means no mask.

The bits in the mask register are coded as follows.

Table 3.15: Bits in mask register and numeric control register

Bit num- Meaning
ber
0 Predicate or mask. The operation is executed only if this bit
is one. If this bit is zero then the operation is not executed,
and any arithmetic error condition is suppressed.

1 Zeroing. This bit determines the result when bit 0 is zero.
Bit 1 = 0 makes the result zero. Bit 1 = 1 makes the value
unchanged, i. e. the output is the same as the input from
the first source operand. Bit 1 has no effect when bit 0 = 1.

2 Detect unsigned integer overflow.
3 Detect signed integer overflow.
6 Propagate error bits detected by bit 2 or 3. This feature is

tentative, see page [75

25

7 Generate a trap if overflow as indicated by bit 2 or 3 is

detected.
18-19 Floating point rounding mode:
00 = nearest or even
01 = down
10 = up
11 = towards zero
20 Support subnormal numbers. Subnormal floating point num-

bers are treated as zero or flushed to zero when this bit is 0
(this is generally faster).

22 Better NAN propagation. If this bit is zero then the IEEE
Standard 754-2008 (or later) is followed strictly for NAN
values. A value of one in bit 22 improves NAN propagation
and the use of NANs for tracing floating point errors. The
details are described on page [7_4}

26 Enable trap on floating point overflow and division by zero.
27 Enable trap on floating point invalid operation.

28 Enable trap on floating point underflow and precision loss.
29 Enable trap for NAN inputs to compare instructions and

floating point to integer conversion instructions.

Bits 8-9, 16-17, 24-25, etc. in a vector mask register can be used like bits 0-1 for
8-bit and 16-bit operand sizes. All other bits are reserved for future use.

Vector instructions treat the mask register as a vector with the same element
size (OS) as the operands. Each element of the mask vector has the bit codes
as listed above. The different vector elements can have different mask bits.

The numeric control register (NUMCONTR) is used as mask when the mask field
is zero or absent. The NUMCONTR register is broadcast to all elements of a vec-
tor, using as many bits of NUMCONTR as indicated by the operand size, when
an instruction has no mask register. The same mask is applied to all vector ele-
ments in this case. Bit 0 in NUMCONTR must be 1.

3.4 Format for jump, call and branch instructions

Most branches in ordinary code are based on the result of an arithmetic or logic
instruction (ALU). The ForwardCom design combines the ALU instruction and
the conditional jump into a single instruction. For example, a loop control can be
implemented with a single instruction that counts down and jumps until it reaches
zero or counts up through negative values and jumps until it reaches zero.

The jumps, calls, branches and multiway branches will use the following formats.

Table 3.16: List of formats for control transfer instructions

26

Format | IL Mode | OP1 | Tem- | Description

plate

1.4 1 4 OPJ | B Short version with two register operands (RD,
RS) and 8 bit offset (IM1).

15C |1 5 OPJ | C Short version with one register operand (RD),
an 8-bit immediate constant (IM2) and 8 bit
offset (IM1), or a 16-bit offset (IM2+IM1
combined).

15D 1 5 0-7 D Jump or call with 24-bit offset.

2.7.0 2 7 0 B2 Double size version with two register operands
and 32 bit offset (IM2). IM1 = OPJ.

2.7.1 2 7 1 B2 Double size version with a register destination

operand, a register source operand, a 16-bit
offset (IM2 lower half) and a 16-bit immediate
operand (IM2 upper half).

2.7.2 2 7 2 C2 Double size version with one register operand
(RD), one 8-bit immediate constant (IM2) and
32 bit offset (IM3).

273 2 7 3 C2 Double size version with one register operand
(RD), an 8-bit offset (IM2) and a 32-bit imme-
diate constant (IM3).

274 2 7 4 C2 Double size system call, no OPJ, 16 bit con-
stant (IM1,IM2) and 32-bit constant (IM3).

3.0.0 3 0 0 Cc2 No operation (NOP).

3.0.1 3 0 1 B3 Triple size version with a register destination

operand, a register source operand, a 32-bit
immediate operand (IM2) and a 32-bit offset
(IM3). Optional.

The jump, call and branch instructions have signed offsets of 8, 16, 24 or 32 bits
relative to the instruction pointer. Or, more precisely, relative to the end of the
instruction. This offset is multiplied by the instruction word size (= 4) to cover
an address range of & a half kilobyte for short conditional jumps with 8 bits off-
set, - 128 kbytes for jumps and calls with 16 bits offset, + 32 megabytes for 24
bits offset, and + 8 gigabytes for 32 bits offsets. The optional triple-size format
includes unconditional jump and call with a 64 bits absolute address.

The versions with template C and C2 have no OT field. The operand type is 64-
bit integer when there is no OT field. It is not possible to use formats with tem-
plate C or C2 with floating point types. The instructions will use vector registers
(first element only) when there is an OT field and M = 1. In other words, the
ALU-jump instructions will use vector registers only when a floating point type

is specified (or 128-bit integer type, if supported). General purpose registers are
used in all other cases. It is possible to use bitwise logical instructions with vector
registers by specifying a floating point type.

27

The OPJ field defines the operation and jump condition. This field has 6 bits in

the single size version and 8 bits in the longer versions. The two extra bits in the
longer versions are used as follows. Bit 6 is reserved for future extensions, and
must be zero. Bit 7 may be used for indicating loop behavior as a hint for choos-
ing the optimal branch prediction algorithm.

The lower 6 bits of the OPJ field contains the following codes.

Table 3.17: List of control transfer instructions: jump, call, return

OPJ bit 0 of | Function Comment
OPJ
0-7 part of | Unconditional jump with 24-bit Format 1.5 D
offset offset
8-15 part of | Unconditional call with 24-bit Format 1.5 D
offset offset
0-1 invert Subtract signed, jump if negative | Format 1.4 and 2.7.0.
(sub_sign_jmpneg) No floating point.
2-3 invert Subtract signed, jump if positive Format 1.4 and 2.7.0.
(sub_sign_jmppos) No floating point.
4-5 invert Subtract unsigned, jump if bor- Format 1.4 and 2.7.0.
row (sub_unsign_jmpborrow) No floating point.
6-7 invert Subtract unsigned, jump Format 1.4 and 2.7.0.
if not zero or borrow No floating point.
(sub_unsign_jmpnzc)
8-9 invert Subtract, jump if not zero Format 1.4 and 2.7.0.
(sub_jmpnzero) No floating point.
10-11 invert Subtract signed, jump if overflow | Format 1.4 and 2.7.0.
(sub_sign_jmpovfl) No floating point.
12-15 Reserved for future use Format 1.4 and 2.7.0.
16-17 | invert Add signed, jump if negative No floating point.
(add_sign_jmpneg)
18-19 | invert Add signed, jump if positive No floating point.
(add_sign_jmppos)
20-21 invert Add unsigned, jump if carry No floating point.
(add_unsign_jmpcarry)
20-21 invert Jump if either operand Floating point
is £ infinite or NAN operands
(cmp_float_jmpinfnan)
22-23 | invert Add unsigned, jump if not zero or | No floating point.
carry (add_unsign_jmpnzc)
22-23 invert Jump if either operand is subnor- | Floating point
mal (cmp_float_jmpsubnorm) operands
24-25 invert Add, jump if not zero No floating point
(add_jmpnzero)

28

26-27 | invert Add signed, jump if overflow No floating point
(add_sign_jmpovfl)
28-29 | invert Shift left by n, jump if not zero Shift right unsigned if
(shift_jmpnzero) n negative
30-31 | invert Shift left by n, jump if carry Shift right unsigned if
(shift_jmpcarry) n negative
32-33 | invert Compare signed, jump if below
(cmp_sign_jmpbelow)
34-35 | invert Compare signed, jump if above
(cmp_sign_jmpabove)
36-37 invert Compare unsigned, jump if below | Integer operands
(cmp_unsign_jmpbelow)
36-37 | invert Jump if either operand is NAN Floating point
(cmp_float_jmpunordered) operands
38-39 invert Compare unsigned, jump if above | Integer operands
(cmp_unsign_jmpabove)
38-39 invert Jump if either operand is + Floating point
infinite (cmp_float_jmpinf) operands
40-41 invert Compare, jump if not equal
(cmp-jmpneq)
42-43 invert Bitwise test, jump if not zero
(test_jmpnzero)
44-45 | invert Bitwise and, jump if not zero
(and_jmpnzero)
46-47 invert Bitwise or, jump if not zero
(or_jmpnzero)
48-49 | invert Bitwise xor, jump if not zero
(xor_jmpnzero)
50-51 invert Test single bit, jump if not zero
(testbit_jmpnzero)
52-53 invert Test single bit on vector register,
jump if not zero
(testbit_jmpnzero)
54-57 Reserved for future use.
58-59 0 jump | Indirect with pointer address in Format 1.4 and 2.7.0.
1 call register RS, pointer offset in IM1
or IM2 (jump/call).
58-59 | 0 jump | Unconditional direct jump/call Format 1.5 C, 2.7.2,
1 call with 16 bit or 32 bit offset or 64- | and 3.0.1.
bit absolute address (jump/call)
60-61 0 jump | Use table of addresses relative Format 1.4,
1 call to RD. RT = table base, RS = template A.

index*OS (jump/call)

29

60-61 0 jump | Unconditional jump or call to Format 1.5.

1 call value of register RS (jump/call)
62 1 Return from function (return) Format 1.4.
62 1 Return from system function Format 1.5.
(sys_return)
63 0 System call. ID in register RT, Format 1.4,

shared memory block RD, length | template A.
RS. No mask (sys_call)

63 0 System call. ID in constants, Format 2.7.1, 2.7.4 and
shared memory block RD, length | 3.0.1.
RS (sys-call)
63 0 Unconditional trap. Interrupt Format 1.5.
number in IM1 (trap).
63 0 Filler for unused code memory. Format 1.5.
All fields are all 1's (filler).
63 0 Trap if unsigned RD > IM3. IM2 | Format 2.7.3.

= 38. Interrupt number is fixed
(cmp_unsign_trapabove).

Signed integer comparisons are corrected for overflow, but signed addition and
subtraction are not. For example, if A is a large positive integer and B is a large
negative integer then sub_sign_jmpneg will jump if the calculation of A-B over-
flows to give a negative result, but cmp_sign_jmpbelow will not jump because A is
bigger than B.

The combined ALU and conditional jump instructions can be coded in the for-
mats 1.4, 1.5 C, 2.7.0, 2.7.1, 2.7.2, 2.7.3, and 3.0.1, except subtraction which
cannot be coded in format 1.5 C. Subtraction with an immediate constant can be
replaced by addition with the negative constant. The code space that would have
been used by subtraction in format 1.5 C is instead used for coding direct jump
and call instructions with a 24-bit offset using format 1.5 D, where the lower
three bits of OP1 are used as part of the 24-bit offset.

The add and subtract operations are usually not supported for floating point
operands because the longer latencies of these floating point operations will com-
plicate the pipeline design. Floating point compare is supported because it is pos-
sible to make a floating point compare operation in a single clock cycle, using
unsigned integer compare on the combined exponent and significant with special
handling of the sign bit and NAN values.

The test bit instruction (testbit_jmpnzero) will test bit number n in the first operand,
where n is the value of the second operand (RS or IM2). This is useful for testing
bit fields, sign bits, and the output of compare instructions. The second operand

is interpreted as an 8-bit unsigned integer regardless of the operand type.

The shift left instructions will shift the first operand left when the second operand
is positive and shift right with zero extension when the second operand is neg-

30

ative. The carry is the last bit shifted out. The operands are interpreted as in-
tegers regardless of the operand type, but vector registers are used if a floating
point operand type is specified (M = 1).

Unconditional and indirect jumps and calls use the formats indicated above, where
unused fields must be zero. Bit 0 of the OPJ field is zero for jump instructions
and one for call instructions.

The table-based indirect jump/call instructions are intended to facilitate multiway
branches (switch/case statements), function tables in code interpreters, and vir-
tual function tables in object oriented languages with polymorphism. The table
of jump or call addresses is stored as signed offsets relative to an arbitrary refer-
ence point, which may be the table address, the code base, or any other reference
point. The operand type specifies the size of the table entries. 16-bit and 32-bit
table entries must be supported. Other sizes are optional. The use of relative
addresses makes the table more compact than if 64-bit absolute addresses were
used. This instruction works as follows. Calculate the address of a table entry as
the base pointer (RT) plus the index (RS) multiplied by the operand size. Read a
signed value from this address, and scale by 4. Sign-extend this value to 64 bits,
and add the reference point (RD). Jump or call to the calculated address. The ar-
ray index (RS) is scaled by the operand size, while the table entries are scaled by
the instruction word size (4). Support for a mask is optional.

The table used by the table-based jump/call instructions may be placed in the
constant data section (CONST). This makes it possible to use the table base as
reference point and it improves security by giving read-only access to the table.

Return instructions do not need a stack offset when the calling conventions speci-
fied on page[99 are used.

System calls use ID numbers rather than addresses to identify system functions.
The ID is the combination of a module ID identifying a particular system mod-
ule or device driver and a function ID identifying a particular function within this
module. The module ID and the function ID are both 16 or 32 bits, so that the
combined system call ID is up to 64 bits. The sys_call instruction has the follow-
ing variants:

Table 3.18: Variants of system call instruction

Format Operand type Function ID Module 1D
1.4 32 bit RT bit 0-15 RT bit 16-31
14 64 bit RT bit 0-31 RT bit 32-63
2.7.1 32 bit IM2 bit 0-15 IM2 bit 16-31
2.7.4 64 bit IM21 bit 0-15 IM3 bit 0-31
3.0.1 64 bit IM2 bit 0-31 IM3 bit 0-31

The sys_call instruction can indicate a block of memory to be shared with the
system function. The address of the memory block is pointed to by the register
specified in RD and the length is in register RS. This memory block, which the

31

caller must have access rights to, is shared with the system function. The system
function will get the same access rights to this block as the calling thread has, i.
e. read access and/or write access. This is useful for fast transfer of data between
the caller and the system function. No other memory is accessible to both the
caller and the called function. If the RD and RS fields are both zero (i. e. indicat-
ing register r0) then no memory block is shared. The sys_call instruction in format
2.7.4 cannot have a shared memory block.

Parameters for system functions are transferred in registers, following the same
calling conventions as normal functions. The registers used for function parame-
ters are usually different from the registers in the RD, RS and RT fields. Function
parameters that do not fit into registers must reside in the shared memory block.

Traps work like interrupts. The unconditional trap has an 8-bit interrupt number
in IM1. This is an index into the interrupt vector table, which initially starts at
absolute address zero. The unconditional trap instruction may use IM2 for addi-
tional information. The conditional trap is intended for checking array bounds.
The interrupt number is fixed (the value has not been decided yet). The condi-
tional trap may optionally support other condition codes in IM2, using the same
codes as OPJ in table B.I7

A trap instruction with all 1's in all fields (opcode Ox6FFFFFFF) can be used as
filler in unused parts of code memory.

3.5 Assignment of opcodes

The opcodes and formats for new instructions can be assigned according to the
following rules.

e Multi-format instructions. Often-used instructions that need to support
many different operand types, addressing modes and formats use most or
all of the following formats: 0.0-0.9, 2.0-2.5, 2.8-2.9, and optionally 3.1 and
3.3 if triple-size instructions are supported. The same value of OP1 is used
in all these formats. OP2 must be 0. Instructions with few source operands
come first.

e Tiny instructions. Only some of the most common instructions are available
in tiny versions, as there is only space for 32 tiny instructions. The instruc-
tions are ordered according to the number and type of operands, as shown

in table [4.6] page

e Control transfer instructions, i. e. jumps, branches, calls and returns, can
be coded as short instructions with IL = 1, mode = 4-5, and OP1 = 0-63
or as double-size instructions with IL = 2, mode = 7, OP1 = 0-15, and
optionally as triple-size instructions with IL = 3, mode = 0, OP1 = 0-15.
See page [26]

e Short single-format instructions with general purpose registers. Use mode
1.0, 1.1, and 1.8, with any value of OPL.

32

e Short single-format instructions with vector registers. Use mode 1.2 and 1.3
with any value of OP1.

e Double-size single-format instructions with general purpose registers can
use mode 2.8 and 2.9 with any value of OP1 and OP2 > 8 (give similar
instructions the same value of OP1), and mode 2.6 with any value of OP1.

e Double-size single-format instructions with vector registers can use mode
2.4 and 2.5 with any value of OP1 and OP2 > 8 (give similar instructions
the same value of OP1), and mode 2.7 with OP1 in the range 16-63.

e Triple-size single-format instructions with general purpose registers can use
mode 3.0 with OP1 in the range 16-63.

e Triple-size single-format instructions with vector registers can use mode 3.2
with any value in OP1.

e Future instructions longer than three 32-bit words are coded with IL = 3,
mode = 4-7.

e New options or other modifications to existing instructions can use OP3
bits or mask register bits.

e New addressing modes may be implemented as single-format read and write
instructions. New addressing modes or other modifications that apply to all
multi-format instructions can use OP3 for option bits. If the bits of OP3
are exhausted then it is possible, as a last resort, to use OP2 values in the
range 1-7.

All unused fields must be zero. The instructions with the fewest input operands
should preferably have the lowest OP1 codes.

The operands are assigned as follows. The destination operand is a register spec-
ified in the RD field. Source operands use register fields RS, RT and RU, unless
these fields are used for other purposes (i. e. base pointer, index, vector length).
If there is a memory operand or an immediate operand then it will be the last
source operand. If the chosen format has fewer source operands than needed for
the instruction then RD is used as both destination and the first source operand.
If there are still not enough operands then the format cannot be used for the spe-
cific instruction. If the format has more operands than needed then any memory
operand or immediate operand will be the last source operand, taking precedence
over any register operand. Unused operand fields must be zero.

33

Chapter 4

Instruction lists

The ForwardCom instructions are listed in a comma-separated file instruction_list.csv.
This file is intended for use by assemblers, disassemblers, debuggers and emula-

tors. The list is preliminary and subject to possible changes. Please remember to
keep the lists in this document and the list in the instruction_list.cvs file synchro-
nized.

The instruction list file has the following fields:

Table 4.1: Fields in instruction list file

Field Meaning
Name Name of instruction as used by assembler.
Category 1: single format instruction,

2: tiny instruction,
3: multi-format instruction,
4: jump instruction.

Formats See table [4.2] below.

Template Hexadecimal number:

0xA - OxE for template A - E,
0x1 for tiny template,

0x0 for multiple templates.

Source Number of source operands, including register, memory and imme-

operands diate operands, but not including mask, option bits, vector length,
and index.

OP1 Operation code OP1.

OP2 Additional operation code OP2. Zero if none.

OP3 bits Number of bits of OP3 field used for options. OP3 is used for shift

used count in format 2.5 and 2.9 only if the value specified here is zero.

34

Operand Hexadecimal number indicating required and optional support for
types gen- each operand type with general purpose registers. See table [4.3]
eral purpose | below for meaning of each bit.

registers

Operand Hexadecimal number indicating required and optional support for

types scalar

each operand type for scalar operations in vector registers. See
table [4.3] below for meaning of each bit.

Operand
types vector

Hexadecimal number indicating required and optional support for
each operand type for vector operations. See table below for
meaning of each bit.

Immediate Type of immediate operand for single-format instructions. See table
operand below.

type

Description Description of the instruction and comments.

35

Table 4.2: Meaning of formats field in instruction list file

Category Interpretation of formats field
1. Single Number with three hexadecimal digits.
format The leftmost digit is the value of the IL field (0-3).
instruction The middle digit is he value of mode field or the combined M+mode
field (0-9).
The rightmost digit is the sub-mode defined by OP3 in mode 2.4.x
and 2.8.x or OP1 in mode 2.7.x. Zero otherwise.
For example 0x283 means format 2.8.3.
0 no operands.
1 RD = general purpose destination register, RS =
immediate operand.
2 RD = g. p. destination register, RS = g. p. source
. register.
_2' Tlny. 4 RD = g. p. destination register, RS = pointer to
Instruction memory source operand.
5 RD = g. p. source register, RS = pointer to memory
destination operand.
8 RD = vector destination register, RS unused.
9 RD = vector destination register, RS immediate
operand.
10 RD = vector destination register, RS vector source
register.
11 RD = vector source register, RS g. p. destination
register r0-r14,r31.
12 RD = vector destination register, RS = pointer to
memory source operand.
13 RD = vector source register, RS = pointer to memory
destination operand.
Hexadecimal number composed of one bit for each format supported:
0x0000001 Format 0.0: three general purpose registers.
0x0000002 Format 0.1: two general purpose registers, 8-bit
immediate.
0x0000004 Format 0.2: Three vector registers.
0x0000008 Format 0.3: Two vectors, 8-bit immediate.
0x0000010 Format 0.4: One vector, memory operand.
0x0000020 Format 0.5: One vector, memory operand with nega-
tive index.
0x0000040 Format 0.6: One vector, scalar memory operand with
index.
0x0000080 Format 0.7: One vector, scalar memory operand with
3. Multi- 8-bit offset.
format 0x0000100 Format 0.8: One g. p. register, memory operand with
instruction index.

36

0x0000200

0x0000400

0x0000800
0x0001000

0x0002000
0x0004000

0x0008000

0x0010000

0x0020000

0x0040000

0x0080000

0x0100000

0x0200000

0x0400000

0x0800000

Format 0.9: One g. p. register, memory operand with
8-bit offset.

Format 2.0: Two g. p. registers, memory op. with
32-bit offset.

Format 2.1: Three g. p. registers, 32-bit immediate.
Format 2.2: One vector register, memory op. with
32-bit offset.

Format 2.3: Three vector registers, 32-bit immediate.
Format 2.4.0: Two vector reg., scalar memory op. w.
16-bit offset.

Format 2.4.1: Two vector reg., memory op. with
16-bit offset.

Format 2.4.2: Two vector reg., memory op. with
negative index.

Format 2.4.3: Two vector reg., scalar mem. op. index
and limit.

Format 2.5: Three vector reg., shifted 16-bit immedi-
ate.

Format 2.8.0: Three g. p. reg., memory op. with
16-bit offset.

Format 2.8.1: Two g. p. reg., memory op. with
unscaled index.

Format 2.8.2: Two g. p. reg., memory op. with
scaled index.

Format 2.8.3: Two g. p. reg., memory op. with index
and limit.

Format 2.9: Three g. p. reg., shifted 16-bit immedi-
ate.

0x1000000 Format 3.1: Three g. p. registers, 64-bit imm. (op-
tional).
0x2000000 Format 3.3: Three vector registers, 64-bit imm. (op-
tional).
Hexadecimal number composed of one bit for each format supported:
0x001 Format 1.4: Two registers, 8-bit offset.
0x002 Format 1.5 C: One register, 8-bit immediate, 8-bit
offset.
0x004 Format 1.5 C: 16-bit offset.
4. Jump 0x008 Format 1.5 D: No register, 24-bit offset.
instruction 0x010 Format 2.7.0: Two registers, 32-bit offset.
0x020 Format 2.7.1: Two registers, 16-bit immediate, 16-bit
offset.
0x040 Format 2.7.2: One register, 8-bit immediate, 32-bit
offset.
0x080 Format 2.7.3: One register, 32-bit immediate, 8-bit

offset.

37

0x100 Format 2.7.4: System call, 16-bit function, 32-bit

module.

0x200 Format 3.0.1: Two registers, 32-bit immediate, 32-bit
offset.

0x400 Format 3.0.1: 64-bit absolute address.

Table 4.3: Indication of operand types supported for general pur-
pose registers, scalars in vector registers, or vectors. The value is
a hexadecimal number composed of one bit for each operand type

supported
0x0001 8-bit integer supported.
0x0002 16-bit integer supported.
0x0004 32-bit integer supported.
0x0008 64-bit integer supported.
0x0010 128-bit integer supported.
0x0020 single precision floating point supported.
0x0040 double precision floating point supported.
0x0080 quadruple precision floating point supported.
0x0100 8-bit integer optionally supported.
0x0200 16-bit integer optionally supported.
0x0400 32-bit integer optionally supported.
0x0800 64-bit integer optionally supported.
0x1000 128-bit integer optionally supported.
0x2000 single precision floating point optionally supported.
0x4000 double precision floating point optionally supported.
0x8000 quadruple precision floating point optionally supported.

Table 4.4: |Immediate operand type for single-format instructions

none or multi-format.

4-bit signed integer.

8-bit signed integer.

16-bit signed integer.

32-bit signed integer.

64-bit signed integer.

8-bit signed integer shifted by specified count.
16-bit signed integer shifted by specified count.
16-bit signed integer shifted by 16.

32-bit signed integer shifted by 32.

4-bit unsigned integer.

8-bit unsigned integer.

16-bit unsigned integer.

co~NOoO O WwWwnN RO

)
o ~

—_
©

38

20
21
33
34
35
39
64
65
66

32-bit unsigned integer.

64-bit unsigned integer.

4-bit signed integer converted to float.

8-bit signed integer converted to float.

16-bit signed integer converted to float.

16-bit signed integer shifted by specified count, converted to float.
half precision floating point.

single precision floating point.

double precision floating point.

Jump instructions are listed on page All other categories of instructions are
listed in the following tables.

4.1 List of multi-format instructions

The following list covers general instructions that can be coded in most or all of
the formats assigned to multi-format instructions.

Table 4.5: List of multi-format instructions
Instruction | OP1 Source| Description
ope-
rands

nop 0 0 No operation.
move 1 1 Copy value.
store 2 1 Store value to memory.
prefetch 3 1 Prefetch from memory.
sign_extend | 4 1 Sign-extend smaller integer to 64 bits.
add 8 2 srcl + src2.
sub 9 2 srcl - src2.
sub_r 10 2 src2 - srcl.
compare 11 2 Compare. Uses condition codes, see p.
mul 12 2 srcl - src2.
mul_hi_s 13 2 (srcl - src2) >> OS, signed (integer only).
mul_hi_u 14 2 (srcl - src2) >> OS, unsigned (integer only).
mul_ex_s 15 2 Multiply even-numbered signed integer vector

elements to double size result.
mul_ex_u 16 2 Multiply even-numbered unsigned integer vector

elements to double size result.
div 17 2 srcl / src2 (optional for integer vectors).
rem 18 2 Modulo (optional for integer vectors).
min 20 2 Signed minimum.
max 21 2 Signed maximum.
min_u 22 2 Minimum. unsigned for integers, abs for f.p.
max_u 23 2 Maximum. unsigned for integers, abs for f.p.

39

and
and_not

or

xor
shift_left
shift_rightu
shift_rights
rotate
extract_bit
set_bit
clear_bit
toggle_bit
mul_add
add_add
userdefb5 -
userdef62
undef

32
33
34
35
36
37
38
39
40
41
42
43
46
47
55-62

63

N W WNNPNPNNDNNNNNDNDDN

srcl & src2.

srcl & (7src2).

srcl | src2.

srcl ™ src2.

srcl << src2.

srcl >> src2, zero extended.

srcl >> src2, sign extended.

Rotate left if src2 positive, right if negative.
Extract bit. (srcl >> src2) & 1.

Set bit. srcl | (1 << src2).

Clear bit. srcl & 7 (1 << src2).
Toggle bit. srcl " (1 << src2).

+ srcl =+ src2 - src3 (optional).

+ srcl &£ src2 £ src3 (optional).
Reserved for user-defined instructions.

Undefined code. Guaranteed to generate trap in all
future implementations.

4.2 List of tiny instructions

Tiny instructions are fitted two in one 32-bit code word. If a tiny instruction can-
not be paired with anything else, it must be paired with a tiny nop.

Tiny instructions have an operand size of 64 bits unless otherwise noted. RD is
the destination register, and in most cases also the first source register. RS can
be a register r0-r15, v0-v15, or an immediate sign-extended 4-bit constant. In-
structions with a pointer in RS use register r0-r14 as pointer when RS is 0-14,

and the stack pointer (r31) when RS is 15.

It is not possible to jump to the second instruction in a tiny pair because instruc-
tion addresses must be divisible by four. If an interrupt or trap occurs in a tiny
instruction then the interrupt handler must remember which of the two tiny in-
structions in the pair was interrupted.

Table 4.6: List of tiny instructions with general purpose registers

Instruction OP1 | Description

nop 0 No operation.

move 1 RD = sign-extended constant RS.

add 2 RD += sign-extended constant RS.

sub 3 RD —= sign-extended constant RS.

shift_left 4 RD <<= unsigned constant RS.

shift_rightu 5 RD >>= unsigned constant RS (zero extended).
move 8 RD = register operand RS.

add 9 RD += register operand RS.

40

sub 10 RD —= register operand RS.

and 11 RD &= register operand RS.

or 12 RD |= register operand RS.

xor 13 RD "= register operand RS.

move 14 Read RD from memory operand with pointer RS (RS
= r0-r14, r31).

store 15 Write RD to memory operand with pointer RS (RS =
rO-r14, r31).

Table 4.7: List of tiny instructions with vector registers

Instruction OP1 | Description

clear 16 Clear register RD by setting the length to zero.

move 17 RD = signed 4-bit integer RS, converted to single
precision scalar.

move 18 RD = signed 4-bit integer RS, converted to double
precision scalar.

move 19 RD = RS. Copy vector of any type.

add 20 RD += RS, single precision float vector.

add 21 RD 4= RS, double precision float vector.

sub 22 RD —= RS, single precision float vector.

sub 23 RD —= RS, double precision float vector.

mul 24 RD *= RS, single precision float vector.

mul 25 RD *= RS, double precision float vector.

add_cps 28 Get size of compressed image for RD and add it to
general purpose register RS.

sub_cps 29 Get size of compressed image for RD and subtract it
from general purpose register RS.

restore_cp 30 Restore vector register RD from compressed image
pointed to by RS.

save_cp 31 Save vector register RD to compressed image pointed
to by RS.

4.3 List of single-format instructions

These instructions are mostly available in only one or a few formats.

Table 4.8: List of single-format instructions with general purpose

registers
Instruction Format| OP1 | Description
bitscan_f 1.0 1 Bit scan forward. Find index to lowest set bit in

RS (optional).

41

bitscan_r

round_d2
round_u2
move

move_u

add
sub
subr
mul
div
add

move

add

and

or

xor

abs
shift_add

read_spe
write_spe
read_cpb

write_cpb
read_perf
read_perfs
read_sys
write_sys

1.0

1.0
1.0
1.1

1.1

11
1.1
1.1
1.1
1.1
11

1.1

1.1

1.1

1.1

1.1

1.8

1.8

1.8
1.8
1.8

1.8
1.8
1.8
1.8
1.8

~NOo b wN

17

18

19

20

32
33
34

35
36
37
38
39

Bit scan reverse. Find index to highest set bit in
RS (optional).

Round down RS to nearest power of 2.

Round up RS to nearest power of 2.

Move 16-bit sign-extended constant to general
purpose register RD.

Move 16-bit zero-extended constant to general
purpose register RD (can be used as first step of
loading a 32-bit constant if double size instruc-
tions are not supported).

Add 16-bit sign-extended constant to RD.
Subtract 16-bit sign-extended constant from RD.
Subtract RD from 16-bit sign-extended constant.
Multiply RD with 16-bit sign-extended constant.
Divide RD with 16-bit sign-extended constant.
Shift 16-bit signed constant left by 16 and add to
RD.

RD = IM2 << IM1. Sign-extend IM2 to 64 bits
and shift left by the unsigned value IM1.

RD += IM2 << IM1. Sign-extend IM2 to 64
bits, shift left by the unsigned value IM1, add to
RD.

RD &= IM2 << IM1. Sign-extend IM2 to 64 bits,
shift left by the unsigned value IM1, AND with
RD.

RD |= IM2 << IM1. Sign-extend IM2 to 64 bits,
shift left by the unsigned value IM1, OR with RD.
RD "= IM2 << IM1. Sign-extend IM2 to 64 bits,
shift left by the unsigned value IM1, XOR with
RD.

Absolute value of integer. Use saturation if IM1 =
1.

Shift and add. RD += RS << IM1 (shift right
zero extended if IM1 negative).

Read special register RS into g. p. register RD.
Write g. p. register RS to special register RD.
Read capabilities register RS into g. p. register
RD.

Write g. p. register RS to capabilities register RD.
Read performance counter.

Read performance counter, serializing.

Read system register RS into g. p. register RD.
Write g. p. register RS to system register RD.

42

load_hi 2.6 0 Load 32-bit constant into the high part of a gen-
eral purpose register. The low part is zero. RD =
IM2 << 32.

insert_hi 2.6 1 Insert 32-bit constant into the high part of a
general purpose register, leaving the low part un-
changed. RD = (RS & O0xFFFFFFFF) | (IM2 <<
32).

add_unsigned | 2.6 2 Add zero-extended 32-bit constant to general
purpose register.

sub_unsigned | 2.6 3 Subtract zero-extended 32-bit constant from
general purpose register.

add_hi 2.6 4 Add 32-bit constant to high part of general pur-
pose register. RD = RS + (IM2 << 32).

and_hi 2.6 5 AND high part of general purpose register with
32-bit constant. RD = RS & (IM2 << 32).

or_hi 2.6 6 OR high part of general purpose register with
32-bit constant. RD = RS | (IM2 << 32).

xor_hi 2.6 7 XOR high part of general purpose register with
32-bit constant. RD = RS " (IM2 << 32).

address 2.6 32 RD = RS + IM2, RS can be THREADP (28),
DATAP (29) or IP (30).

Table 4.9: List of single-format instructions with vector registers and
mixed register types
Instruction Format| OP1, | Description
OoP2

set_len 1.2 0 RD = vector register RT with length changed to
value of RS.

get_len 1.2 1 Get length of vector register RS into general pur-
pose register RD.

set_num 1.2 2 Change the length of vector register to RS-OS.

get_num 1.2 3 Get length of vector register divided by the
operand size.

compress 1.2 4 Compress vector RT of length RS to a vector of
half the length and half the element size. Double
precision — single precision, 64-bit integer —
32-bit integer, etc.

compress_ss 1.2 5 Compress integer vector RT of length RS to a
vector of half the length and half the element size,
signed with saturation (optional).

compress_us 1.2 6 Compress integer vector RT of length RS to a

vector of half the length and half element size,
unsigned with saturation (optional).

43

expand

expand_us

compress_spars

expand_sparse

extract

insert
broadcast

bits2bool

bool2bits

bool_reduce

shift_expand

shift_reduce

shift_up

1.2

1.2

el.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

10

11

12

13

14

15

16

18

19

20

Expand vector RT of length RS/2 and half the
specified element size to a vector of length RS
with the specified element size. Half precision —
single precision, 32-bit integer — 64-bit integer
with sign extension, etc.

Expand integer vector RT of length RS/2 and half
the specified element size to a vector of length RS
with the specified element size. 32-bit integer —
64-bit integer with zero extension, etc.

Compress sparse vector elements indicated by
mask bits into contiguous vector. RS = length of
input vector. (optional).

Expand contiguous vector into sparse vector with
positions indicated by mask bits. RS = length of
output vector. (optional).

Extract one element from vector RT, starting at
offset RS-OS, with size OS into scalar in vector
register RD.

Replace one element in vector RD, starting at
offset RS-OS, with scalar RT.

Broadcast first element of vector RT into all
elements of RD with length RS.

The lower n bits of RT are unpacked into a
boolean vector RD with length RS, with one

bit in each element, where n = RS / OS.

The boolean vector RT with length RS is packed
into the lower n bits of RD, taking bit 0 of each
element, where n = RS / OS. The length of RD is
at least sufficient to contain n bits.

The boolean vector RT with length RS is re-
duced by combining bit 0 of all elements. The
output is a scalar integer where bit 0 is the AND
combination of all the bits, and bit 1 is the OR
combination of all the bits. The remaining bits are
reserved for future use.

Shift vector RT up by RS bytes and extend the
vector length by RS. The lower RS bytes of RD
will be zero.

Shift vector RT down RS bytes and reduce the
length by RS. The lower RS bytes of RT are lost.
Shift elements of vector RT up RS elements. The
lower RS elements of RD will be zero, the upper
RS elements of RT are lost.

44

shift_dn

div_ex_s

div_ex_u
sqrt
add_c

sub_b

add_ss
add_us
sub_ss
sub_us
mul_ss
mul_us
shl_ss
shl_us
add_oc
sub_oc
subr_oc
mul_oc

div_oc
input

1.2

1.2

1.2

1.2

1.2

1.2

1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

1.2
1.2

21

24

25

26

28

29

30
31
32
33
34
35
36
37
38
39
40
41

42
48

Shift elements of vector RT down RS elements.
The upper RS elements of RD will be zero, the
lower RS elements of RT are lost.

Divide vector of double-size signed integers RS

by signed integers RT. RS has element size 2-OS.
These are divided by the even numbered elements
of RT with size OS. The results are stored in the
even-numbered elements of RD. The remainders
are stored in the odd-numbered elements of RD.
(Optional for vectors).

Same, with unsigned integers. (Optional for vec-
tors).

Square root (floating point, optional).

Add with carry. Vector has two elements. The up-
per element is used as carry on input and output
(optional).

Subtract with borrow. Vector has two elements.
The upper element is used as borrow on input and
output (optional).

Add integer vectors, signed with saturation (op-

tional).

Add integer vectors, unsigned with saturation
(optional).

Subtract integer vectors, signed with saturation
(optional).

Subtract integer vectors, unsigned with saturation
(optional).

Multiply integer vectors, signed with saturation
(optional).

Multiply integer vectors, unsigned with saturation
(optional).

Shift left integer vectors, signed with saturation
(optional).

Shift left integer vectors, unsigned with saturation
(optional).

add with overflow check (optional).

subtract with overflow check (optional).
subtract reverse with overflow check (optional).
multiply with overflow check (optional).

divide with overflow check (optional).

read from input port. RD = vector register, RT
= port address, RS = vector length (privileged
instruction).

45

output

gp2vec

set_bits_x
clear_bits_x

make_sequence
mask_length
vec2gp
bitscan_f
bitscan_r

float2int

int2float

round

round2n

abs
popcount
broadcast
fp_category
byte_reverse
bit_reverse
truth_tab2

read_spev

1.2

13B

13B
13B

1.3 B

13B

1.3B

13B

13B

1.3 B

13B

1.3B

13B

1.3 B

13B

13B

1.3 B

13B

1.3B

13 B

13B

49

10

12

13

14

15

16

17

18

19

20

21

24

30

write to output port. RD = vector register source
operand, RT = port address, RS = vector length
(privileged instruction).

Move value of general purpose register RS to
scalar in vector register RD.

Set all bits except one. RD = RS | 7 (1 << IM1).
Clear all bits except one. RD = RS & (1 <<
IM1).

Make a vector with RS sequential numbers. First
value is IM1.

Make mask with true in the first RS bytes. Option
bits in IM1.

Move value of first element of vector register RS
to general purpose register RD.

Bit scan forward. Find index to lowest set bit in
RS (optional for vectors).

Bit scan reverse. Find index to highest set bit in
RS (optional for vectors).

Conversion of floating point to integer with the
same operand size. The rounding mode is speci-
fied in IM1.

Conversion of integer to floating point with same
operand size.

Round floating point to integer in floating point
representation. The rounding mode is specified in
IM1.

Round to nearest multiple of 2.

RD = 2™ round(27"- RS). n is a signed integer
constant in IM1 (optional).

Absolute value of integer. Uses saturation if IM1
=1

Count the number of bits in RS that are 1.
Broadcast 8-bit constant into all elements of

RD with length RS (31 in RS field gives scalar
output).

Check if floating point numbers belong to the
categories indicated by constant.

Reverse the order of bytes in each element of
vector.

Reverse the order of bits in each element of vector
(optional).

Boolean function of two inputs, given by a truth
table.

Read special register RT into vector register RD
with length RS.

46

move
add

and

or

xor

move

move

add

add

and

and

or

or

Xor

xor

add

add

mov

13C
13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

13C

32
33

34

35

36

38

39

40

41

42

43

44

45

46

47

48

49

56

Move 16 bit constant to 16-bit scalar (optional).
Add broadcast 16 bit constant to 16-bit vector
elements (optional).

AND broadcast 16 bit constant with 16-bit vector
elements (optional).

OR broadcast 16 bit constant with 16-bit vector
elements (optional).

XOR broadcast 16 bit constant with 16-bit vector
elements (optional).

RD = IM2 << IM1. Sign-extend IM2 to 32 bits
and shift left by the unsigned value IM1 to make
32 bit scalar (optional).

RD = IM2 << IM1. Sign-extend IM2 to 64 bits
and shift left by the unsigned value IM1 to make
64 bit scalar (optional).

RD += IM2 << IM1. Add broadcast shifted
signed constant to 32-bit vector elements (op-
tional).

RD += IM2 << IM1. Add broadcast shifted
signed constant to 64-bit vector elements (op-
tional).

RD &= IM2 << IM1. AND broadcast shifted
signed constant with 32-bit vector elements (op-
tional).

RD &= IM2 << IM1. AND broadcast shifted
signed constant with 64-bit vector elements (op-
tional).

RD |= IM2 << IM1. OR broadcast shifted signed
constant with 32-bit vector elements (optional).
RD |= IM2 << IM1. OR broadcast shifted signed
constant with 64-bit vector elements (optional).
RD "= IM2 << IM1. XOR broadcast shifted
signed constant with 32-bit vector elements (op-
tional).

RD "= IM2 << IM1. XOR broadcast shifted
signed constant with 64-bit vector elements (op-
tional).

RD += IM21 << 16. Add broadcast signed 16-
bit constant shifted left by 16 to 32-bit vector
elements (optional).

RD += IM21 << 16. Add broadcast signed 16-
bit constant shifted left by 16 to 64-bit vector
elements (optional).

Move converted half precision floating point con-
stant to single precision scalar (optional).

47

mov
add
add
mul
mul

permute

concatenate

truth_tab3
truth_tab4
mul_add
add_add
add_add_add
add_add_add
load_hi
insert_hi
make_mask
replace
replace_even
replace_odd

broadcast

13C

13C

13C

13C

13C

25

25

25

25

2.5

25

25

25

2.7

2.7

2.7

2.7

2.7

2.7

2.7

57
58
59
60
61

2,8

3,10
3,11

16
17
18
19
20
21

22

Move converted half precision floating point con-
stant to double precision scalar (optional).

Add broadcast half precision floating point con-
stant to single precision vector (optional).

Add broadcast half precision floating point con-
stant to double precision vector (optional).
Multiply broadcast half precision floating point
constant with single precision vector (optional).
Multiply broadcast half precision floating point
constant with double precision vector (optional).
The vector elements of RT are permuted within
each block of size RS bytes, using indices in RU.
Each index is relative to the beginning of a block.
An index out of range produces zero. The maxi-
mum block size is implementation dependent.

A vector RT of length RS and a vector RU of
length RS are concatenated into a vector RD of
length 2-RS.

Boolean function of three inputs, given by a truth
table (optional).

Boolean function of four inputs, given by a truth
table (optional).

RD = + RS £ RT - RU (optional but recom-
mended).

RD = + RS £ RT + RU (optional).

RD = + RS + RT £+ RU + IM2 Add three vec-
tor register operands and a 16-bit constant IM2
(optional).

RD = £ RD + RS + RT 4+ RU Add four vector
register operands (optional).

Make vector of two elements. dest[0] = 0, dest[1]
= IM2.

Make vector of two elements. dest[0] = src1[0],
dest[1] = IM2.

Make vector where bit 0 of each element comes
from bits in IM2, the remaining bits come from
RS.

Replace elements in RS by constant IM2.
Replace even-numbered elements in RS by con-
stant IM2.

Replace odd-numbered elements in RS by constant
IM2.

Broadcast 32-bit constant into all elements of
RD with length RS (31 in RS field gives scalar
output).

48

permute

2.7

33

The vector elements of RT are permuted within
each block of size RS bytes. The 4-n bits of IM2
are used as index with 4 bits for each element in
blocks of size n. The same pattern is used in each
block. The number of elements in each block, n =
RS / OS < 8.

Table 4.10: List of single-format instructions with memory operands.

Instruction Format| OP1, | Description
OoP2

store 27B | 48 Store 32-bit constant IM2 to memory operand
with base RT and 8-bit offset IM1 (optional).

fence 2.4.x 0,8 Memory fence. read, write or full indicated by
OP3.

cmp_swap 2.8.x 1,8 Atomic compare and exchange.

read_insert 2.4.0 2,8 Replace one element in vector RD, starting at

243 offset RS-OS, with scalar memory operand (op-

tional).

move_store 2.4.x 3,8 Conditional move and store.
Mask bits = 01 or 11: store RU.
Mask bits = 10: store zero.
Mask bits = 11: store RD.
(optional).

extract_store 2.4.0 3,9 Extract one element from vector RD, starting at
offset RS-OS, with size OS into memory operand
with base RT and offset IM2 (optional).

extract_store 243 3,9 Extract one element from vector RD, starting at
offset RS-OS, with size OS into memory operand
with base RT, scaled index RU and unsigned limit
RU < IM2 (optional).

compress_store| 2.4.1 3, 10 | Compress vector RD of length RS to a vector of
half the length and half the element size. Double
precision — single precision, 64-bit integer — 32-
bit integer, etc. Store at memory with base RT,
offset IM2, length RS/2 (optional).

add_store 2.4.x 4,8 Add RD and RU, store the result to memory
operand (optional).

sub_store 2.4.x 4,9 Subtract RU from RD, store the result to memory
operand (optional).

mul_store 2.4.x 4,10 | Multiply RD and RU, store the result to memory
operand (optional).

read_memory_ | 2.4.2 48, 8 | Read memory map. RD = map entry, RT = mem-

map

ory pointer, RS = vector length and negative
index to both source and destination (privileged).

49

write_memory_| 2.4.2 48, 9 | Write memory map. RD = map entry, RT =
map memory pointer, RS = vector length and negative
index to both source and destination (privileged).

4.4 Description of instructions

Instructions that need special explanation are described in this section.

Multi-format instructions
nop

It is recommended to code NOPs as 32-bit words of all zeroes. The processor
is allowed to skip this type of NOPs as fast as it can at an early stage in the
pipeline. A pair of tiny instructions where the second instruction is a NOP can
be treated as a single instruction.

These NOPs cannot be used as timing delays, only as fillers.

move

Copy value from a register, memory operand or immediate constant to a regis-
ter. If the destination is a vector register and the source is an immediate constant
then the result will be a scalar. The value will not be broadcast because there is
no other input operand that specifies the vector length. If a vector is desired then
use the broadcast instruction instead.

The move instruction with an immediate operand is the preferred method for set-
ting a register to zero.

The move instruction has several additional tiny and single-format variants. The
assembler will normally choose the shortest variant that fits the specified operands.

store

The source and destination operands are swapped so that the value of RD is writ-
ten to a memory operand. Only formats that specify a memory operand (scalar or
vector without broadcast) are allowed.

The size of the memory operand is determined by the operand size OS when a
scalar memory operand is specified, or by the vector length register in RS when a
vector memory operand is specified.

The hardware must be able to handle memory operand sizes that are not powers
of 2 without touching additional memory (read and rewrite beyond the memory
operand is not allowed unless access from other threads is blocked during the op-
eration and any access violation is suppressed). It is allowed to write the operand
in a piecemeal fashion.

50

Masked operation with bit 0 and 1 both zero will write zero to the memory.

Masked operation with bit 0 = 0 and bit 1 = 1 may or may not be supported for
vector registers. If supported, this combination will leave the memory position un-
touched. This cannot be implemented as read-combine-write because this would
not be thread-safe.

prefetch

Prefetch memory operand into cache. Different variants can be specified by bit
0-3 of OP3 for format 2.4 and 2.8.

sign_extend

The input can be an 8-bit, 16-bit or 32-bit integer. This integer is sign-extended
to produce a 64-bit output in a general purpose register or a scalar in a vector
register. If the input is a vector then only the first element in each 64-bit block of
the input vector is used. Floating point types cannot be used.

min and max

min(srcl,src2) = srcl < src2 7 srcl : src2
max(srcl,src2) = srcl < src2 ? srcl : src2

The operands are treated as signed. There is also a version for unsigned integers:

min_u(srcl,src2) = srcl < src2 ? srcl @ src2
max_u(srcl,src2) = srcl < src2 ? srcl : src2

When the unsigned version is applied to floating point operands, it takes the ab-
solute values of the operands, and the instruction name is changed:

min_abs(srcl, src2) = min(abs(srcl), abs(src2))
max_abs(srcl, src2) = max(abs(srcl), abs(src2))

The handling of floating point NAN operands is determined by bit 22 of the mask
register or the mumeric control register. If bit 22 is zero then the non-nan operand
is output when one of the inputs is NAN, in accordance with the IEEE Standard
754-2008. If bit 22 is one then the NAN input is propagated.

A NAN operand that is not propagated will generate a trap if flag bit 29 is set.

Bitwise boolean instructions

These instructions include: and, and_not, or, xor. Floating point operands are
handled in the same way as integer operands.

51

Bit manipulation instructions
The following instructions are provided for manipulating bits:

extract_b: Extract bit number src2 in srcl

set_b: Change bit number src2 in srcl to 1

clear_b: Change bit number src2 in srcl to 0

toggle_b: Change bit number src2 in srcl to its opposite

A floating point operand in srcl is treated as an integer with the same size. The
bit index in src2 is interpreted as an 8-bit unsigned integer regardless of the operand

type.

These instructions can be implemented with an 8-bit immediate constant for src2
instead of the larger constant that would be needed if we used AND, OR, XOR
instructions for manipulating single bits. These instructions can also be used with
floating point numbers, mainly for manipulating the sign bit.

mul_add
Fused multiply and add.
dest = =+ srcl + (src2 - src3)

The fused multiply-and-add instruction can often improve the performance of
floating point code significantly.

Only instruction formats that allow three operands are supported.

The signs of the operands can be inverted as indicated by bits 0-3 of the OP3
field in formats that use the E2 template, including the extra format 2.5, with:

bit 0: change sign of srcl in even-numbered vector elements
bit 1: change sign of srcl in odd-numbered vector elements
bit 2: change sign of src2-src3 in even-numbered vector elements
bit 3: change sign of src2-src3 in odd-numbered vector elements

This makes it possible to do multiply-and-add, multiply-and-subtract, multiply-
and-reverse-subtract, etc. It can also do multiply with alternating add and sub-
tract, which is useful in calculations with complex numbers. There is no sign
change in other formats where the OP3 field is absent. An additional single-format
version of mul_add is supplied with four register operands and an OP3 field.

The OP3 field is not used as shift count in formats 2.5 and 2.9.

Support for integer operands is optional. Support for floating point operands is
optional but desired.

add_add

Two additions in one instruction.

dest = = srcl = src2 =+ src3

52

Only instruction formats that allow three operands are supported.

The signs of the operands can be inverted as indicated by bits 0-2 of the OP3
field in formats that use the E2 template, including the extra format 2.5:

bit 0: change sign of srcl
bit 1: change sign of src2
bit 2: change sign of src3

There is no sign change in other formats where the OP3 field is absent. An addi-
tional single-format version of add_add is supplied with four register operands and
an OP3 field.

The OP3 field is not used as shift count in formats 2.5 and 2.9.

The precision for floating point operands is preferably better than the least sig-
nificant bit of the numerically highest operand, but the intermediate result is not
calculated with unlimited precision. The hardware implementation can adjust the
exponents of all operands in the first clock cycle and use the adder network of the
multiplication circuit.

This instruction should only be supported if it can be implemented so that it is
faster than two consecutive add instructions. It may be supported for integer
operands or floating point or both. See also add_add_add page [66]

Compare instructions

A compare instruction compares two source operands and stores the result in bit

0 of the destination. The condition is determined by an additional code stored in
the third source operand when formats 0.0-0.3 or 2.0-2.3 are used. Formats that

use the E2 template (2.4, 2.5, 2.8, 2.9) are coded differently: The condition code
is in the OP3 field. The 16-bit IM2 field in the formats 2.5 and 2.9 is used as the
second source operand. This operand is not shifted by OP3.

The remaining bits of the result are copied from the mask register, or from the
numeric control word if no mask is used. This is suitable when the result is used
as a mask.

The condition code is defined in this table:

Table 4.11: Condition codes for compare instruction

Bit Meaning
0 Inverts the condition.
1-2 Determines the condition:
0 = smaller,
1 = equal,
2 = bigger,
3 = unordered.

53

3 For integer operands:

0 = signed operands,

1 = unsigned operands.

For floating point operands:

This bit indicates the result if one or both operands are NAN.

Compare instructions can be masked. Bit 0 of the result is equal to bit 1 of the
mask register if bit 0 of the mask register is zero.

Tiny format instructions
clear

This instruction sets the length of a vector register to zero. All contents is lost.
The register can then be regarded as unused.

Push and pop operations

There are no push and pop instructions. A general purpose register R can be
pushed on the stack with the following pair of tiny instructions:

add sp,—8
store [sp],R

A general purpose register R can be popped from the stack with the following
pair of tiny instructions:

move R,[sp]
sub sp,—8

Note that the constant -8 can be contained in the 4-bit signed field RS, but the
constant 8 cannot. This is the reason why we are adding and subtracting -8 rather
than doing the opposite with +8.

The assembler may support macros named push and pop for these sequences.

Saving and restoring vector registers

When saving a vector register with variable length, we do not want to save the

maximum length when only part of the register is used. Therefore, we have the

save_cp and restore_cp instructions which are intended for saving and restoring a
vector register without using more memory than necessary.

Note that the format for the saved image is implementation-dependent. Typi-
cally, the save_cp instruction will save the length of the vector followed by as
many bytes as indicated by the length, and the restore_cp instruction will read
the length and then read as many bytes as indicated by the length.

The microprocessor is allowed to compress the data in any way that it can handle
sufficiently fast. For example, a boolean vector that uses only one bit per element

54

can obviously be compressed to a much smaller size. The image for an unused
vector register will typically contain only a few bytes of zero for the length.

The software should never use the saved image for anything else than restoring
a vector register on the same microprocessor model that saved it, because the
image format is not compatible across microprocessors.

The size of the saved image can be added to a pointer with the add_cps instruc-
tion or subtracted from a pointer with the sub_cps instruction. RS indicates the
pointer, which can be r0-14 or r31 (stack pointer).

A vector register V can be saved (pushed) on the stack with the following pair of
tiny instructions:

sub_cps sp,V
save_cp [sp].V

A vector register V can be restored (popped) from the stack with the following
pair of tiny instructions:

restore_cp V,[sp]
add_cps sp,V

The same instructions can be used for saving vector registers during a task switch.
Unused vector registers will only use very little space when saved in this way.

The size of the compressed image, as indicated by the add_cps and sub_cps in-
structions, must be a multiple of 8 when the stack pointer is used in order to
keep the stack properly aligned.

It is allowed to use a smaller size that is not a multiple of 8 during a task switch
where, typically, another pointer register is used. In this case, a control register
must be provided to control the format of the saved image.

The restore_cp instruction is allowed to read more bytes than necessary, up to the
maximum vector length plus 8 bytes, and discard any superfluous bytes afterwards
when the actual length is known.

Single-format instructions that use general purpose registers
and special registers

read_spe, write_spe

Read or write a special register. The following special registers are currently de-
fined. The size is 64 bits. These registers are initialized with their default values
at program start.

Table 4.12: List of special registers

Special Meaning
register
number

55

0 Numeric control register (NUMCONTR)

1 Microprocessor brand ID

2 Microprocessor version number

28 Thread environment block pointer (THREADP)
29 Data section pointer (DATAP)

read_cpb, write_cpb

Read or write processor capabilities register. These registers are used for indicat-
ing capabilities of the processor, such as support for optional instructions and lim-
itations to vector lengths. The size is 64 bits. These registers are initialized with
their default values at program start.

The immediate constant in IM1 determines details of the operation:

Table 4.13: Meaning of immediate constant in read_cpb and
write_cpb instructions

Bit number | Meaning

0 0: read/write the capabilities for the operand type specified
in bit 5-7.

1: read the typical capabilities for all operand types / write
the capabilities for all relevant operand types.

1 0: read the current value of the register, which may have
been modified.

1: read the real capabilities of the hardware (cannot write.)
5-7 Operand type for capabilities.

Table 4.14: List of capabilities registers

Capabilities | Meaning

register

number

0 Maximum vector length for general instructions.

1 Maximum vector length for permute instructions.

2 Maximum block size for permute instructions.

3 Maximum vector length for compress_sparse and ex-
pand_sparse.

8 Support for optional instructions in general purpose registers.
Each bit indicates a specific instruction.

9 Support for optional instructions on scalars in vector regis-
ters. Each bit indicates a specific instruction.

10 Support for optional instructions on vectors. Each bit indi-
cates a specific instruction.

56

Changing the values of the maximum vector length has the following effects. If
the maximum length is reduced below the physical capability then any attempt to
make a longer vector will result in the reduced length. The behavior of vector reg-
isters that already had a longer length before the maximum length was reduced, is
implementation dependent. If the maximum vector length is set to a higher value
than the physical capability then any attempt to make a vector longer than the
physical capability will cause a trap to facilitate emulation. Capabilities registers
0-3 can be increased for the purpose of emulation. The value of capabilities regis-
ters 0-3 must be powers of 2.

Capabilities registers 8-9 can be modified for test purposes or to tell the software
not to use a specific instruction. The same value will be returned when reading
the register. Attempts to execute an instruction that is not supported will cause a
trap, regardless of the value of the capabilities register.

read_sys, write_sys

These instructions are for accessing various registers that are only accessible in
mode.

read_perf

Read the internal clock count, number of instructions executed, or other performance-
related counts.

read_perfs

Same as read_perf. This instruction is serializing, which means that it cannot exe-
cute out of order.

popcount

The popcount instruction counts the number of 1-bits in an integer. It can also
be used for parity generation.

bitscan_f

Bit scan forward.

Find index to lowest set bit, i. e. highest X for which

(((1 << X) - 1) & srcl)) == 0.

bitscan_r

Bit scan reverse.
Find index to highest set bit, i. e. highest X for which (1 << X) < srcl.

57

round_d2

Round down to nearest power of 2, i. e. 1 << bit_scan_reverse(srcl).

round_u2

Round up to nearest power of 2, i. e.

(S& (5-1)) == 07 S: 1 << (bit_scan_reverse(S) + 1),

where S = srcl.

shift_add

Shift and add. dest = srcl + (src2 << src3).

srcl uses the same register as dest. src3 is an 8-bit signed immediate constant.

Will shift right with zero extension if src3 is negative.

address

Calculate an address relative to a pointer by adding a 32-bit sign-extended con-
stant to a general purpose register or a special register. The pointer register can
be r0-r27, THREADP (28), DATAP (29), IP (30) or SP(31).

cmp_swap

Atomic compare and swap instruction, used for thread synchronization and for
lock-free data sharing between threads. srcl and src2 are register operands, src3
is a memory operand, which must be aligned to a natural address. All operands
are treated as integers, regardless of the specified operand type. The operation is:

temp = src3;

if (temp = srcl) src3 = src2;

return temp,

Further atomic instructions can be implemented, if needed, in format 2.8 with
OP1 =1 and increasing values of OP2.

Single-format instructions with g. p. register input and vector
register output, or vice versa

gp2vec

The value of a general purpose register is copied to a scalar in a vector register.
The length will be the operand size. No type conversion is made.

58

vec2gp

The first element of a vector register is copied to a general purpose register. If
an integer type less than 64 bits is specified then the value is sign-extended to 64
bits. If a single-precision float type is specified then the value is zero-extended to
64 bits. No other type conversion is made.

set_len

Sets the length of a vector register to the number of bytes specified by a general
purpose register. If the specified length is more than the maximum length for the
specified operand type then the maximum length will be used.

If the output vector is longer than the input vector then the extra elements will
be zero. If the output vector is shorter than the input vector then the extra ele-
ments will be discarded.

get_len

Gets the length of a vector register in bytes. The result is stored in a general pur-
pose register.

set_num

Same as set_len, the length is multiplied by the operand size.

get_num

Same as get_len, the length is divided by the operand size.

mask_length

Make a boolean vector to mask the first n elements of a vector, where

n = RS / (operand size). The output vector RD will have the same length as the
input vector RD. RS indicates the length of the part that is enabled by the mask.
IM1 contains the following option bits:

bit 0 = 0: bit 0 will be 1 in the first n elements in the output and 0 in the rest.
bit 0 = 1: bit 0 will be 0 in the first n elements in the output and 1 in the rest.
bit 1 = 1: set bit 1 of all elements in the output to 1.

bit 2 = 1. copy bit 1 of each element from input vector RD.

bit 3 = 1: copy bit 1 of each element from the numeric control register.

bit 4 = 1. copy remaining bits from input vector RD.

bit 5 = 1. copy remaining bits from the numeric control register.

Output bits that are not set by any of these options will be zero.

59

make_sequence

Makes a vector of length RS bytes. The number of elements is RS/(operand
size). The first element is equal to IM1, the next element is IM1+1, etc. Support
for floating point is optional.

Other single-format instructions that may change the length
of a vector

bits2bool

Expand contiguous bits in a vector register to a boolean vector with one bit in
each element.

bool2bits

Convert a boolean vector of n elements to n contiguous bits in a vector register.
The length of the destination vector will be a power of 2 sufficient to hold n bits.

shift_expand

The length of a vector is expanded by the specified number of bytes by adding
zero-bytes at the low end and shifting all bytes up. If the resulting length is more
than the maximum vector length for the specified operand type then the upper
bytes are lost.

shift_reduce

The length of a vector is reduced by the specified number of bytes by removing
bytes at the low end and shifting all bytes down. If the resulting length is less
than zero then the result will be a zero-length vector. The specified operand type
is ignored.

compress

The elements of a vector are converted to half the element size. The length of
the output vector will be half the length of the input vector. The OT field speci-
fies the operand type of the input vector. Double precision floating point numbers
are converted to single precision. Integer elements are converted to half the size
by discarding the upper bits. Support for the following conversions are optional:
single precision float to half precision, quadruple precision to double precision, 8-
bit integer to 4-bit.

If the length of the input vector differs from the length specified by RS, then the
length is converted to RS before compression.

60

compress_ss

Same as compress. Integers are treated as signed and compressed with saturation.
Floating point operands cannot be used. This instruction is optional.

compress_us

Same as compress. Integers are treated as unsigned and compressed with satura-
tion. Floating point operands cannot be used. This instruction is optional.

expand

This is the opposite of compress. The output vector has the specified length and
the input vector has half this length. The OT field specifies the operand type of
the output vector. Single precision floating point numbers are converted to double
precision. Integers are converted to the double size by sign-extension. Support

for the following conversions are optional: half precision float to single precision,
double precision to quadruple precision, 4-bit integer to 8-bit.

If the length of the input vector differs from RS/2 then the length is converted
before expansion. If the resulting length exceeds the maximum vector length for
the specified operand type then the extra elements are lost.

expand_us

Same as expand. Integers are expanded by zero-extension. Floating point operands
cannot be used.

Single-format instructions that can move data horizontally
from one vector element to another

The latency of these instructions may depend on the distance of moving (speci-
fied by RS) for very long vectors.
extract

Extract one element of a vector into a scalar in a vector register. An index out of
range will produce zero. An operand size of 16 bytes can be used, even if this size
is not otherwise supported.

insert

Replace one element of a vector by inserting a scalar into the position indicated
by the index. An index out of range will leave the vector unchanged. An operand
size of 16 bytes can be used, even if this size is not otherwise supported.

61

shift_up

Shift elements of a vector up by the number of elements indicated by RS. The
lower RS elements of the output will be zero, the upper RS elements of the input
are lost.

This instruction differs from shift_expand by indicating the shift count as a num-
ber of elements rather than a number of bytes, and by not changing the length of
the vector.

shift_dn

Shift elements of a vector down by the number of elements indicated by RS. The
upper RS elements of the output will be zero, the lower RS elements of the input
are lost.

This instruction differs from shift_reduce by indicating the shift count as a num-
ber of elements rather than a number of bytes, and by not changing the length of
the vector.

permute

This instruction permutes the elements of a vector. The vector is divided into
blocks of size RS bytes each. The block size must be a power of 2 and a multiple
of the operand size. Elements can be moved arbitrarily between positions within
each block, but not between blocks. Each element of the output vector is a copy
of an element in the input vector, selected by the corresponding index in an index
vector. The indexes are relative to the start of the block they belong to, so that
an index of zero will select the first element in the block of the input vector and
insert it in the corresponding position of the output vector. The same element

in the input vector can be copied to multiple elements in the output vector. An
index out of range will produce a zero. The indexes are interpreted as an integers
regardless of the operand type.

The permute instruction has two versions. The first version specifies the indexes
in a vector with the same length and element size as the input vector.

The second version specifies the indexes as a 32-bit immediate constant with 4
bits per element. This constant is split into a maximum of 8 elements with 4 bits
in each. If the blocks have more than 8 elements each then the sequence of 8
elements is repeated to fill a block. The same pattern of indexes will be applied
to all blocks in this version of the permute instruction.

The maximum block size for the permute instruction is implementation-dependent
and given by a special register. The reason for this limitation of block size is that
the complexity of the hardware grows quadratically with the block size. A full
permutation is possible if the vector length does not exceed the maximum block
size. A trap is generated if RS is bigger than the maximum block size.

62

There are two ways to combine the outputs of multiple permute instructions. One
method is to use indexes out of range to produce zeroes for unused outputs and
then OR’ing the outputs. Another method is to use masks to combine the out-
puts.

Permute instructions are useful for reordering data, for transposing a matrix, etc.

Permute instructions can also be used for parallel table lookup when the block
size is big enough to contain the entire table.

Finally, permute instructions can be used for gathering and scattering data within
an area not bigger than the vector length or the block size.

broadcast

Copies the first element of the input vector to all elements of the output vector.
An element size of 16 bytes (128 bits) is supported if the maximum vector length
is more than 16 bytes, even if this size is not otherwise supported.

Other single-format vector instructions
Saturated arithmetic
add_ss, add_us, sub_ss, sub_us, mul_ss, mul_us, shl_ss, shl_us.

These instructions are used for arithmetic operations with saturation. An overflow
will result in the maximum value for the given operand size. An underflow will
result in the minimum value.

Support for these instructions is optional.

Add with carry and subtract with borrow
add_c, sub_b

dest and srcl are vectors of two integers. src2 is a vector of integers, where only
the first element is used.

add_c:

sum = srcl[0] + src2[0] + (srcl[1l] & 1)
dest [0] = bit 0—63 of sum
dest[1] = bit 64 of sum

sub_b:

sum = srcl [0] — src2[0] — (srcl[1] & 1)
dest [0] = bit 0—63 of sum
dest[1] = bit 64 of sum

Support for these instructions is optional. Longer vectors are not supported. See
page [68] for an alternative for longer vectors.

63

Arithmetic instructions with overflow check
add_oc, sub_oc, subr_oc, mul_oc, div_oc.

These instructions use the even-numbered vector elements for arithmetic instruc-
tions. Each following odd-numbered vector element is used for overflow detection.
If the first source operand is a scalar then the result operand will be a vector with
two elements.

Overflow conditions are indicated with the following bits:

bit 0. Unsigned integer overflow (carry).
bit 1. Signed integer overflow.

bit 2. Floating point overflow.

bit 3. Floating point invalid operation.

The values are propagated so that the overflow result of the operation is OR’ed
with the corresponding values of both input operands.

These instructions are optional.

Extended division

div_ex_s, div_ex_u

These instructions are optional. They may be supported for both scalars and vec-
tors, for scalars only, or not at all.

byte_reverse

This instruction reverses the order of bytes in an integer. It can be used when
reading and writing binary data files with big endian data organization.
read_spev

The value of the RT field indicates a special register to read. The output is a vec-
tor register with length specified by RS.

The following special registers are currently defined:

Table 4.15: Special registers that can be read into vectors

Special Meaning

register

number

0 Numeric control register (NUMCONTR). The value is broadcast

into all elements of the destinationregister with the indicated
operand size and length.

1 Name of processor. The output is a zero-terminated UTF-8 string
containing the brandname and model name of the microprocessor.

64

replace
All elements of srcl are replaced by the integer or floating point constant src2.

When used without a mask, the constant is simply broadcast to make a vector
of the same length as srcl. When used with a mask, the elements of srcl are
selectively replaced. Elements that are not selected by the mask will be zero or
unchanged, depending on bit 1 in the mask.

make_mask

Make a mask from the bits of the 32-bit integer constant src2. Each bit of src2
goes into bit 0 of one element of the output. The remaining bits of each element
are taken from srcl. The length of the output is the same as the length of srcl.
If there are more than 32 elements in the vector then the bit pattern of src2 is
repeated.

fp_category

The input is a floating point vector. The output is a boolean vector indicating if
the input belongs to any of the categories indicated by the bits in the immediate
operand:

Table 4.16: Meaning of bits in fp_category

Bit number | Meaning

Invert result

Zero

Subnormal

Normal

Infinite

NAN

Sign bit

Copy remaining bits from mask or numeric control register.

~No oo b~ wnNNRr O

Truth table functions
truth_tab2, truth_tab3, truth_tab4

These instructions can make an arbitrary boolean function of two, three or four
boolean vector input variables, expressed by a truth table. The result in bit 0 of
each vector element is the arbitrary boolean function of bit 0 of the correspond-
ing elements of each of the input operands. Bit 0 of the output is a bit from the
truth table selected by the combined input bits. The remaining bits of the out-
put vector are copied from the mask register if there is one, or from the first input
operand otherwise.

truth_tab2 has the inputs in RD and RS, the output in RD, and a 4-bit truth ta-
ble in IM1.

65

truth_tab3 has the inputs in RS, RT and RU, the output in RD, and an 8-bit
truth table in IM2.

truth_tab4 has the inputs in RD, RS, RT and RU, the output in RD, and a 16-bit
truth table in IM2.

truth_tab4 must have an operand size of at least 16 bits. truth_tab3 and truth_tab4
are optional.

A mask can be used as an extra input operand for truth_tab3 and truth_tab4, ac-
cording to the normal function of a mask.

These instructions can be used as universal instructions for manipulating and
combining boolean vectors and masks.

The hardware implementation can use the existing barrel shifters, shifting the
truth table right by the count defined by the combined bits of the input operands.

add_add_add

Adds four operands. The last operand can be a register operand or a 16-bit signed
immediate operand. The signs of the operands can be inverted as indicated by
bits 0-3 of the OP3 field:

bit 0: change sign of srcl
bit 1: change sign of src2
bit 2: change sign of src3
bit 3: change sign of src4

See add_add page [52| for more details.

This instruction is optional.

4.5 Common operations that have no dedicated
instruction

This section discusses some common operations that are not implemented as sin-
gle instructions, and how to code these operations in software.

Change sign

For integer operands, do a reverse subtract from zero. For floating point operands,
use the toggle_b instruction on the sign bit.

Floating point abs

To get the absolute value of a floating point number, use the clear_b instruction
to clear the sign bit.

66

Not

To invert all bits in an integer, do an XOR with -1. To invert a Boolean, do an
XOR with 1.

Rotate through carry

Rotates through carry are rarely used, and common implementations can be very
inefficient. A rotate left through carry can be replaced by an add_c with the same
register in both source operands.

Horizontal vector add

An instruction for adding all elements of a vector would be useful, but such an in-
struction is not supported because this would be a complex instruction with vari-
able latency depending on the vector length.

The sum of all elements of a vector can be calculated by repeatedly adding the
lower half and the upper half of the vector. This method is illustrated by the fol-
lowing example, finding the horizontal sum of a vector of 32-bit integers. The
syntax for assembly language is described on page [108]

v0 = my_vector // we want the horizontal sum of this vector
r0 = get_len(v0) // length of vector in bytes
r0 = roundu2.64(r0) // round up to nearest power of 2
v0 = set_len(v0, r0) // adjust vector length
// Loop to calculate horizontal sum of v0
LOOP: // label
// Half vector length
rl = shift_rightu.64(r0, 1)
// Get upper half of vector
vl = shift_reduce(v0, rl)
// Add upper half and lower half
v0 = add.32(vl, v0) // result has the length of the first
// Half length for next iteration
ro =rl
// loop while vector contains more than one element
compare_unsign_jmpabove(rl, 4, LOOP)
// The sum is now a scalar in v0

The same method can be used for other horizontal operations. It may cause prob-
lems that the set_len instruction inserts elements of zero if the vector length is
not a power of 2. Special care is needed if the operation does not allow extra el-
ements of zero, for example if the operation involves multiplication or finding the
minimum element. A possible solution is to mask off the unused elements in the
first iteration. The following example finds the smallest element in a vector of
floating point numbers:

67

operand

v0 = my_vector // find the smallest element in this vector
r0 = get_len(v0) // length of vector in bytes

rl = roundu2.64(r0) // round up to nearest power of 2

rl = shift_rightu.64(rl, 1) // half length

vl = shift_reduce(v0, rl) // upper part of vector

r2 = sub.64(r0, rl) // length of vl

// use mask because the two operands may have different length

v0 = set_len(v0, rl) // reduce length of v0

v2 = v0 // arbitrary vector with length rl

v2 = mask_length.32(v2, r2, 0x22) // make mask for vl

v0 = min.f(v0, vl, mask=v2) // get minimum. mask off unused elements

cmp_unsign_jmpbeloweq(rl, 4, ENDOFLOOP) // check if already finished

// Loop to calculate horizontal minimum of v0
LOOP: // label

// Half vector length

r2 = shift_rightu.64(rl, 1)

// Get upper half of vector

vl = shift_reduce(v0, r2)

// Get minimum of upper half and lower half

vO = min.f(vl, v0) // result has the length of the first operand

// Half length for next iteration
rl = r2
// loop while vector contains more than one element
compare_unsign_jmpabove(r2, 4, LOOP)
ENDOFLOOP:
// The minimum is now a scalar in vO

High precision arithmetic

Function libraries for high precision arithmetic typically use a long sequence of
add-with-carry instructions for adding integers with a very large number of bits. A
more efficient method for big number calculation is to use vector addition and a
carry-look-ahead method. The following algorithm calculates A + B, where A and
B are big integers represented as two vectors of n-64 bits each, where n < 64.

v = A // first vector, nx64 bits

vl =B // second vector, nx64 bits

v2 = carry_in // scalar in vector register

v0 = add.64(v0, vl) // sum without intermediate carries

v3 = compare.64(v0,v1,8) // carry generate = (SUM < B). (unsigned compare)
vd = compare.64(v0,—1,0xA) // carry propagate = (SUM = -1)

v3 = bool2bits(v3) // carry generate, compressed to bitfield

vd = bool2bits(v4) // carry propagate, compressed to bitfield

// CA=CP "~ (CP + (CG<<1) + CIN) // propagated additional carry
v3 = shift_left.64(v3,1) // shift left carry generate
v2 = add.64(v2,v4)

68

v2 = add.64(v2,v3)

v2 = xor.64(v2,v4)

vl = bits2bool(v2) // expand additional carry to vector
v0 = sum.64(v0,vl) // add correction to sum

r0 = get_-num(vO0) // n = number of elements in vectors
v3 = gp2vec.64(r0) // copy to vector register

v2 = shift_rightu.64(v2,v3) // carry out

// v0 = sum, v2 = carry out

If the numbers A and B are longer than the maximum vector length then the al-
gorithm is repeated. If the vector length is more than 64 * 8 bytes then the cal-
culation of the additional carry involves more than 64 bits, which again requires a
big number algorithm.

4.6 Unused instructions
Unused instructions and opcodes can be divided into three types:

1. The opcode is reserved for future use. Attempts to execute it will trigger
a trap (synchronous interrupt) which can be used for generating an error
message or for emulating instructions that are not supported.

2. The opcode is guaranteed to generate a trap, not only in the present ver-
sion, but also in all future versions. This can be used as a filler in unused
parts of the memory or for indicating unrecoverable errors. It can also be
used for emulating user-specific instructions.

3. The error is ignored and does not trigger a trap. It can be used for future
extensions that improve performance or functionality, but which can be
safely ignored when not supported.

All three types are implemented, where type 1 is the most common.

Nop instructions with nonzero values in unused fields are type 3. These instruc-
tions are ignored.

Prefetch and fence instructions with no memory operand, with nonzero values in
unused fields, or with undefined values in OP3 are type 3. These instructions are
ignored.

Unused bits in masks and numeric control register are type 3. These bits are ig-
nored.

Trap instructions and conditional trap instructions with nonzero values in unused
fields or undefined values in any field are type 2. These instructions are guaran-
teed to generate a trap. A special version of the trap instruction is intended as
filler in unused or inaccessible parts of code memory.

69

The undef instruction is type 2. It is guaranteed to generate a trap in all systems.
It can be used for testing purposes and emulation.

The userdef__ instructions are type 1. These instructions are reserved for user-
defined and application-specific purposes.

Instructions with erroneous coding should preferably behave as type 1. This in-
cludes instruction codes with nonzero values in unused fields, operand types not
supported, or any other bit pattern with no defined meaning in any field. Type 3
behavior may alternatively be allowed in these cases. If so, the instruction should
behave as if it were coded correctly.

All other opcodes not explicitly defined are type 1. These may be used for future
instructions.

Small systems with no operating system and no trap support should define alter-
native behavior.

70

Chapter 5

Other implementation details

5.1 Endianness

The memory organization is little endian. Instructions for byte swapping are pro-
vided for reading and writing big endian binary data files.

Rationale

The storage of vectors in memory would depend on the element size if the or-
ganization was big endian. Assume, for example, that we have a 128 bit vector
register containing four 32-bit integers, named A, B, C, D. With little endian or-
ganization, they are stored in memory in the order:

A0, A1, A2, A3, B0, B1, B2, B3, C0, C1, C2, C3, DO, D1, D2, D3,

where A0 is the least significant byte of A and D3 is the most significant byte of
D. With big endian organization we would have:

A3, A2, A1, A0, B3, B2, B1, B0, C3, C2, C1, C0, D3, D2, D1, DO.

This order would change if the same vector register is organized, for example, as
eight integers of 16 bits each or two integers of 64 bits each. In other words, we
would need different read and write instructions for different vector organizations.

Little endian organization is more common for a number of reasons that have
been discussed many times elsewhere.

5.2 Implementation of call stack
There are various methods for saving the return addresses for function calls: a

link register, a separate call stack, or a unified stack for return addresses and local
data. Here, we will discuss the pro's and con’s of each of these methods.

71

Link register

Some systems use a link register to hold the return address. The advantage of

a link register is that a leaf function can be called without storing anything on
the stack. This saves cache bandwidth in programs with many leaf function calls.
The disadvantage is that every non-leaf function needs to save the link register on
a stack before calling another function, and restore the leaf register before return-
ing.

If we decide to have a link register then it should be a special register, not one

of the general purpose registers. A link register does not need to support all the
things that a general purpose register can do. If the link register is included as
one of the general purpose registers then it will be tempting for a programmer to
save it to another register rather than on the stack, and then end the function by
jumping to that other register. This will work, of course, but it will interfere with
the way returns are predicted. The branch predictor uses a special mechanism

for predicting returns, which is different from the mechanism used for predicting
other jumps and branches. This mechanism, which is called a return stack buffer,
is a small rolling cache that remembers the addresses of the last calls. If a func-
tion returns by a jump to another register than the link register then it will use
the wrong prediction mechanism, and this will cause severe delays due to mispre-
diction of the subsequent series of returns. The return stack buffer will also be
messed up if the link register is used for indirect jumps or other purposes.

The only instructions that are needed for the link register other than call and re-
turn, are push and pop. We can reduce the number of instructions in non-leaf
functions by making a combined instruction for “push link register and then call
a function” which can be used for the first function call in a non-leaf function,
and another instruction for “pop link register and then return” to end a non-leaf
function. However, this will violate the principle that we want to avoid complex
instructions in order to simplify the pipeline design.

The only performance gain we get from using a link register is that it saves cache
bandwidth by not saving the return address on leaf function calls. It will not af-
fect performance in applications where cache bandwidth is not a bottleneck. The
performance of the return instruction is not influenced by cache bandwidth be-
cause it can rely on the prediction in the return stack buffer.

The disadvantage of using a link register is that the compiler has to treat leaf
functions and non-leaf functions differently, and that non-leaf functions need extra
instructions for saving and restoring the leaf register on the stack.

Therefore, we will not use a link register in the ForwardCom architecture.

Separate call stack

We may have two stacks: a call stack for return addresses and a data stack for
the local data of each function. A program without recursive functions will usu-
ally have a quite limited call depth so that the entire call stack, or at least the

72

“hot” part of it, can be stored on the chip. This will improve the performance be-
cause no memory or cache operations are needed for call and return operations

— at least not in the critical innermost loops of the program. It will also simplify
prediction of return addresses because the on-chip rolling stack and the return
stack buffer will be one and the same structure.

The call stack can be implemented as a rolling register stack on the chip. The
call stack is spilled to memory if it overflows. A return instruction after such a
spilling event will use the on-chip value rather than the value in memory as long
as the on-chip value has not been overwritten by new calls. Therefore, the spilling
event is unlikely to occur more than once in the innermost part of a program.

The pointer for the call stack should not be a general purpose register because
the programmer will rarely need to access it directly. Direct manipulation of the
call stack is only needed in a stack unroll event (after an exception or long jump)
or a task switch.

A function does not have easy access to the return address that it was called
from. Information about the caller may be supplied explicitly as a function pa-
rameter in the rare case that it is needed. There is a security advantage in hiding
the return address inside the chip. This prevents overwriting return addresses in
case of program errors or malicious buffer overflow attacks.

The disadvantage of having a separate call stack is that it makes memory man-
agement more complicated because there are two stacks that can potentially
overflow. The size of the call stack can be predicted accurately for programs
without recursive functions by using the method described on page [106]

A separate call stack may be implemented with the ForwardCom architecture.
The size of the on-chip stack buffer and other details will be implementation-
dependent.

Unified stack for return addresses and local data

Many current systems use the same stack for return addresses and local data.
This method may be used with the ForwardCom architecture because it is simple
to implement.

Conclusion for ForwardCom

A ForwardCom system may use a separate call stack or a unified stack, but not

a link register. The hardware implementation of call and return instructions de-
pends on whether there is one or two stacks. The dual stack system will be used
for large processors where performance or security is important, while the uni-
fied stack system may be used in small processors where simplicity is preferred.

A ForwardCom microprocessor does not have to support both systems, but the
software does. The calling conventions defined on page 99| will make the software
compatible with both single stack and dual stack processors. Tail calls can be im-

73

plemented efficiently with a simple jump instruction regardless of the stack type.

5.3 Floating point errors and exceptions

Exceptions for floating point errors are disabled by default, but can be enabled
with bits 26-29 in the numeric control register or a mask register. Enabled excep-
tions are caught as traps (synchronous interrupts).

It is a problem that an exception caused by a single element in a vector will inter-
rupt the processing of the whole vector. The behavior of a program using floating
point vectors will depend on the vector length in case of traps caused by a single
vector element. We can rely on the generation and propagation of NAN and INF
values instead of traps if we want consistent results on different processors with
different vector lengths.

NAN values will be propagated through the sequence of floating point calcula-
tions. A NAN can contain a bit pattern of diagnostic information called the pay-
load, and this bit pattern is propagated to the result. A problem arises when two
different NANs are combined, for example NAN1 + NAN2. The IEEE standard
(754-2008) specifies that only one of the two NAN operands is propagated to
the result. This violates the fundamental principle that addition is commutative.
The result can be inconsistent when a compiler swaps the two operands. Another
problem with the IEEE standard is that NAN values are not propagated through
the max and min instructions according to this standard.

Here, it is proposed to deviate from this unfortunate standard and output the OR
combination of the input NAN payloads when multiple NAN operands are com-
bined. This will make the propagation of NANs more useful and consistent. Dif-
ferent bits in the NAN payload can be used for indicating different error condi-
tions. If multiple different error conditions have arisen in a sequence of calcula-
tions then all these conditions can be traced in the final result. This better prop-
agation of NAN values is enabled by setting bit 22 in the numeric control register
or in a mask register.

The implementation will use only one bit in the NAN payload for each error con-
dition. A quiet NAN has bit number -1 of the significand set, while the remaining
bits are available for any payload information. The ForwardCom processor puts
diagnostic information in the payload if better NAN propagation is enabled by bit
22 in the numeric control register or a mask register. Bit number -2 in the sig-
nificand indicates invalid arithmetic operations such as 0/0, 0 - 0o, 0o — oo, etc.
Bit number -3 indicates a square root of a negative number, and other complex
number results. The remaining payload bits are available for other purposes such
as function libraries.

Other methods for generating error messages in function libraries are discussed on

page

74

5.4 Detecting integer overflow

There is no common standard method for detecting overflow in integer calcula-
tions. The detection of overflow in signed integer operations is a real nightmare in
some programming languages like C++ (see e. g.

stackoverflow.com /questions /199333 /how-to-detect-integer-overflow-in-c-c.

It would be nice to have a reliable way of detecting integer overflow and perhaps
to propagate it through a series of calculations, analogous to the NAN propaga-
tion for floating point calculations, so that errors can be checked at the end of

a series of calculations rather than after each operation. Compilers could sup-
port this method by offering overflow detection with a try/catch block. It is more
likely that compilers will support integer overflow detection if the hardware offers
a reasonable method.

The following methods have been proposed:

1. Use a few vacant bits in the mask registers for detecting and propagating
overflow and other errors. This method has a number of problems that will
impede out-of-order execution. The mask register will be used not only for
input to each instruction but also output. Each instruction will then have
two outputs rather than one. This will make the out-of-order scheduler
much more complicated, and it will cause undesired dependencies when the
same mask register is used for multiple instructions that otherwise would be
independent.

2. Use the even-numbered elements in a vector register for normal calculation
on integers and use the following odd-numbered elements for the overflow
information. The overflow information is propagated together with the cal-
culated values. This method will be efficient for scalar integer calculations,
but wasteful for vectors because half the vector elements are used only for
this purpose.

3. Use one element of a vector for the overflow bits of all the other elements.
This method may be tempting because it does not waste as much register
space as the previous method, but it will have inferior performance because
of the transport delay when moving overflow bits to a distant part of a long
vector.

4. Add extra bits in the vector registers for overflow information. All vector
registers will have one extra overflow bit for each 32 bits of normal data.
These overflow bits are preserved when a vector register is saved and re-
stored with the save_cp and restore_cp instructions, but they are lost when
the vector is saved as normal data. The behavior of the overflow bits is con-
trolled by the following bits in the numeric control register or a mask regis-
ter.

Bit 2: detect unsigned integer overflow.
Bit 3: detect signed integer overflow.

75

http://stackoverflow.com/questions/199333/how-to-detect-integer-overflow-in-c-c

Bit 4: detect floating point overflow (tentative).

Bit 5: detect floating point invalid operations (tentative).

Bit 6: propagate overflow information from input operands by OR'ing the
result of the current instruction with the overflow bits of all vector register
input operands. An extra instruction must be provided for extracting the
overflow bits from a vector register.

5. Generate a trap in case of integer overflow. Use a mask register or the nu-
meric control register as in method 4. Bit 7 enables a trap on the condi-
tions indicated by bit 2 (unsigned integer overflow) or bit 3 (signed integer
overflow). This method requires little extra code, but it is subject to the
problem that the behavior of vector code depends on the vector length in
case of traps, as explained in the previous chapter for floating point errors.

Method 2 is tentatively supported here with the optional instructions add_oc, etc.,
described on page

Support for method 4 may be considered, since it would be more efficient and
useful. The cost of implementing method 4 is that we will need 3% more bits in
the vector registers; the save_cp and restore_cp instructions will be more compli-
cated; and the compiler has to check for overflow before saving vectors to mem-
ory in the normal way.

Method 5 should be supported. It is useful for integer code in general purpose
registers and it is useful for verifying that overflow does not occur in vector regis-
ters.

These methods should not detect overflow in saturated arithmetic instructions
and shift instructions.

5.5 Multithreading

The ForwardCom design makes it possible to implement very large vector regis-
ters to process large data sets. However, there are practical limits to how much
you can speed up the performance by using larger vectors. First, the actual data
structures and algorithms often limit the vector length that can be used. And sec-
ond, large vectors mean longer physical distances on the semiconductor chip and
longer transport delays.

Additional parallelism can be obtained by running multiple threads in each their
CPU core. The design should allow multiple CPU chips or multiple CPU cores on
the same physical chip.

Communication and synchronization between threads can be a performance prob-
lem. The system should have efficient means for these purposes, including specu-
lative synchronization.

It is probably not worthwhile to allow multiple threads to share the same CPU
core and level-1 cache simultaneously (this is what Intel calls hyper-threading)

76

because this could allow a low priority thread to steal resources from a high prior-
ity thread, and it is difficult for the operating system to determine which threads
might be competing for the same execution resources if they are run in the same
CPU core.

5.6 Security features

Security is included in the fundamental design of both hardware and software.
This includes the following features.

e A flexible and efficient memory protection mechanism.

e Optional separation of call stack and data stack so that return addresses
cannot be compromised by buffer overflow.

e Each thread has its own protected memory space, except where compatibil-
ity with legacy software requires a shared memory space for all threads in an
application.

e Device drivers and system functions have carefully controlled access rights.
These functions do not have general access to application memory, but only
to a specific block of memory that an application may share with a system
function when calling it. A device driver has only access to a specific range
of input/output ports and system registers as specified in the executable file
header and controlled by the system core.

e A fault in a device driver should not generate a “blue screen of death”, but
generate an error message and close the application that called it and free
its resources.

e Application programs have only access to specific resources as specified in
the executable file header and controlled by the system.

e Array bounds checking is simple and efficient, using an addressing mode
with built-in bounds checking or a conditional trap.

e Various optional methods for checking integer overflow.
e There is no “undefined” behavior. There is always a limited set of permissi-
ble responses to an error condition.

How to improve the security of applications and systems

Several methods for improving security are listed below. These methods may be
useful in ForwardCom applications and operating systems where security is impor-
tant.

77

Protect against buffer overflow

Input buffers must be protected against overflow. If a software-based protection
is not sufficient then you may allocate an isolated block of memory for the input

buffer. See page

Protect arrays

Array bounds should be checked.

Protect against integer overflow

Use one of the methods for detecting integer overflow mentioned on page [75]

Protect thread memory

Each thread in an application should have its own protected memory space. See

page [86]

Protect code pointers

Function pointers and other pointers to code are vulnerable to control flow hijack
attacks. These include:

Return addresses. Return addresses on the stack are particularly vulnerable to
buffer overflow attacks. Use a dual stack design to isolate the return stack
from other data.

Jump tables. Switch/case multiway branches are often implemented as tables of
jump addresses. These should use the jump table instruction with the table
placed in the CONST section with read-only access. See page 31}

Virtual function tables. Programming languages with object polymorphism,
such as C++, use tables of pointers to virtual functions. These should use
the call table instruction with the table placed in the CONST section with
read-only access. See page

Procedure linkage tables. Procedure linkage tables, import tables and symbol
interposition are not used in ForwardCom. See page

Callback function pointers. If a function receives a pointer to a callback func-
tion as parameter, then keep this pointer in a register rather than saving it
to memory.

State machines. If a state machine or similar algorithm is implemented with
function pointers then place these function pointers in a constant array, use
a state variable as index into this array and check the index for overflow.
The compiler should have support for defining an array of relative function
pointers in the CONST section and access them with the call table instruc-
tion.

78

Other function pointers. Most uses of function pointers can be covered by
the methods described above. Other uses of function pointers should be
avoided in high security applications, or the pointers should be placed in
protected memory areas or with unpredictable addresses. (See Code-Pointer
Integrity link).

Control access rights of application programs

The executable file header of an application program should include information
about which kinds of operations the application needs permission to. This may
include permission to various network activities, access to particular sensitive files,
permission to write executable files and scripts, permission to install drivers, per-
mission to spawn other processes, permission to inter-process communication, etc.
The user should have a simple way of checking if these access rights are accept-
able. We may implement a system for controlling the access rights of scripts as
well. Web page scripts should run in a sandbox.

Control access rights of device drivers

Many operating systems are giving very extensive rights to device drivers. Rather
than having a bureaucratic centralized system for approval of device drivers, we
should have a more careful control of the access rights of each device driver. The
system call instruction in ForwardCom gives a device driver access to only a lim-
ited area of application memory (see page . The executable file header of a
device driver should have information about which ports and system registers

the device driver has access to. The user should have a simple way of checking

if these access rights are acceptable.

Standardized installation procedure

Malware protection should be an integral part of the operating system, not a
third-party add on. The operating system should provide a standardized way of
installing and uninstalling applications. The system should refuse to run any pro-
gram, script or driver that has not been installed through this procedure. This
will make it possible for the user to review the access requirements of all installed
programs and to remove any malware or other unwanted software through the
normal uninstallation procedure.

79

http://dslab.epfl.ch/proj/cpi/
http://dslab.epfl.ch/proj/cpi/

Chapter 6

Programmable
application-specific
instructions

Rather than implementing a lot of special instructions for specific applications, we
may provide a means for generating user-defined instructions which can be coded
in a hardware description language, e. g. VHDL or Verilog.

The microprocessor can have an optional FPGA or similar programmable hard-

ware. This structure can be used for making application-specific instructions or

functions, e. g. for coding, encryption, data compression, signal processing, text
processing, etc.

If the processor has multiple CPU cores then each core may have its own FPGA.
The hardware definition code is stored in its own cache for each core. The op-
erating system should prevent, as far as possible, that the same core is used for
different tasks that require different hardware codes. There may be features for
allowing an application to monopolize an FPGA or part of it.

If it cannot be avoided that multiple applications use the same FPGA in the same
CPU core, then the code, as well as the contents of any memory cells in the FPGA,
must be saved on each task switch. This saving may be implemented as lazy, i. e.
the contents is only swapped when the second task needs the FPGA structure

that contains code for the first task.

There must be instructions for accessing the user-defined functions, including
means for input and output, and for adapting to the latency of the user-defined
functions.

80

Chapter 7

Microarchitecture and
pipeline design

The ForwardCom instruction set is intended to facilitate a consistent and efficient
design of the pipeline of a superscalar microprocessor. Instructions can have one
destination operand, up to three or four source operands, a mask register, and

a register specifying vector length. The last source operand can be a register, a
memory operand or an immediate constant. All other operands are registers, ex-
cept for memory write instructions. The total number of input registers to an in-
struction, including source operands, mask, base pointer, index and vector length
specifier cannot be more than five.

No instruction can have more than one memory operand. No instruction can have
both a memory source operand and an immediate operand, though this may be
allowed in future extensions. Any extra immediate operand field can be used for
option bits.

A high performance pipeline may be designed as superscalar with the following
stages.

e Fetch. Fetching blocks of code from the instruction cache, one cache line at
a time, or as determined by the branch prediction machinery.

e Instruction length decode. Determine the length of each instruction and
identify tiny instructions. Distribute the first P instructions into each their
pipeline lane, where P is the number of parallel lanes implemented in the
pipeline. Excess instructions may be queued for the next clock cycle.

e Instruction decode. ldentify and classify all operands, opcode and option
bits. Determine input and output dependencies.

e Register allocation and renaming.

e Instruction queue.

81

Put instructions into reservation station. Schedule for address calculator.

Calculate address and length of memory operand. Check access rights.

Read memory operand. Schedule for execution units.
e Execution units.
e Retire or branch.

It is not necessary to split instructions into micro-operations if the reading of
memory operands is done in a separate pipeline stage and instructions are allowed
to stay in the reservation station until the memory operand has been read.

Each stage in the pipeline should ideally require only one clock cycle. Instructions
waiting for an operand should stay in the reservation station. Most instructions
will use only one clock cycle in the execution unit. Multiplication and floating
point addition need a pipelined execution unit with several stages. Division and
square root may use a separate state machine.

Jump, branch, call and return instructions also fit into this pipeline design.

The reservation station has to consider all the input and output dependencies of
each instruction. Each instruction can have up to five input dependencies and one
output dependency.

There can be multiple execution units so that it is possible to run multiple in-
structions in the same clock cycle if their operands are independent.

An efficient out-of-order processing requires renaming of the general purpose reg-
isters and vector registers, but not necessarily the special registers.

Complex instructions and microcode should generally be avoided. We do not have
an instruction for saving or restoring all registers during a task switch. Instead,
the necessary instructions for saving and restoring registers are implemented as
tiny instructions to reduce the size of an instruction sequence that saves all regis-
ters.

The following instructions are moderately complex: call, return, div, rem, sqrt,
cmp_swap, save_cp, restore_cp. These instructions may be implemented as dedi-
cated state machines. The same applies to traps, Interrupts and system calls.

Some current CPUs have a “stack engine” in order to predict the value of the
stack pointer for a push, pop or call instruction when preceding stack opera-
tions are delayed due to operands that are not available yet. Such a system is

not needed if we have a dual stack design (see page . Even with a single stack
design, there is little need for a stack engine because push and pop operations
will be rare in critical parts of the code if the function calling conventions in this
document are followed (page .

Branch prediction is important for the performance. We may implement four dif-
ferent branch prediction algorithms: one for ordinary branches, one for loops, one

82

for indirect jumps, and one for function returns. The long form of branch instruc-
tions have an option bit for indicating loop behavior. The short form of branch
instructions does not have space for such a bit. The initial guess may be to as-
sume loop behavior if the branch goes backwards and ordinary branch behavior if
the branch goes forwards. This assumption may be corrected later, if necessary,
by the branch prediction machinery.

The code following a branch is executed speculatively until it is determined whether
the prediction was right. We may implement features for running both sides of a
branch speculatively at the same time.

The ForwardCom design allows large microprocessors with very long vector reg-
isters. This requires special design considerations. The chip layout of vector pro-
cessors is typically divided into “data lanes” so that the vertical transfer of data
from a vector element to the corresponding vector element in another vector (i.
e. same lane) is faster than the horizontal transfer of data from one vector ele-
ment to another element at another position of the same vector (i. e. different
lane). This means that instructions that transfer data horizontally across a vector,
such as broadcast and permute instructions, may have longer latencies than other
vector instructions. The scheduler needs to know the instruction latency, and this
can be a problem if the latency depends on the distance of data transfer on very
long vectors. This problem is addressed by indicating the vector length or the dis-
tance of data transfer for such instructions in a separate operand, which always
uses the RS register field. This information may be redundant because the vector
length is stored in the vector register operands, but the scheduler needs this in-
formation as early as possible. The other register operands are typically not ready
until the clock cycle where they go to the execution unit, while the vector length
is typically known earlier. The microprocessor can read the RS register at the ad-
dress calculation stage in the pipeline, where it also reads any pointer, index reg-
ister and vector length for memory operands. This allows the scheduler to predict
the latency a few clock cycles in advance. The instruction set provides the extra
information about vector length or data transfer length in RS for all instructions
that involve horizontal data transfer, including memory broadcast, permute, in-
sert, extract and shift instructions, but not broadcasting of immediate constants.

The data path to the data cache and memory should be quite wide, possibly
matching the maximum vector length, because cache access and memory access
are typical bottlenecks.

83

Chapter 8

Memory model

The address space is using unsigned 64-bit addresses and 64-bit pointers. Future
extension to 128-bit addresses is possible, but this will probably not be relevant in
a foreseeable future.

Absolute addresses are rarely used. Most data objects, functions and jump targets
are addressed with signed offsets of 32 bits or less relative to some reference point
contained in a 64-bit pointer. This pointer can be the instruction pointer (IP),
the data section pointer (DATAP), the stack pointer (SP), or a general purpose
register.

An application can have access to the following sections of data:

e Program code (CODE). This memory block is executable with or without
read access, but without write access. The CODE section can be shared
between multiple processes running the same program.

e Constant program data (CONST). This contains constants and tables used
by the program without write access. It may be shared between multiple
processes.

e Static read/write program data sections, which can be initialized (DATA)
and uninitialized (BSS). This is used for global data and for static data in-
side functions. Multiple instances are needed if multiple processes are run-
ning the same code.

e Stack data (STACK). This is used for non-static data inside functions. Each
process or thread has its own stack, addressed relative to the stack pointer.
The stack grows downward from high to low addresses when data are added
to the stack.

e Program heap (HEAP). Used for dynamic memory allocation by an applica-
tion program.

84

e Thread data (THREADD). Allocated when a thread is created and used for
thread-local static data and thread environment block.

References within the CODE section use 8-bit, 16-bit, 24-bit and 32-bit signed
references relative to the instruction pointer, scaled by the code word size which
is 4 bytes.

The CONST section is preferably placed immediately before the CODE section.
Data in the CONST section are mostly addressed relative to the instruction pointer
with no scale factor. (In case of a pure Harvard architecture, the CONST section
may be placed in readable program memory to be addressed relative to the in-
struction pointer, or it may be placed in data memory and addressed relative to
DATAP).

The DATA and BSS sections are addressed relative to the data section pointer
(DATAP) which is a special register that points to some reference point in these
sections. The preferred reference point is where DATA ends and BSS begins.
Multiple running instances of the same program will have different values of the
data section pointer. The CODE and CONST sections contain no direct refer-
ences to DATA or BSS, only references relative to the data section pointer. This
makes it possible for multiple processes to share the same CODE and CONST
sections, but have each their private DATA and BSS sections without the need for
virtual address translation. The DATA and BSS sections can be placed anywhere
in the address space independently of where CONST and CODE are placed.

STACK data are addressed relative to the stack pointer (SP). Heap data are ad-
dressed through pointers provided by the heap allocation function.

Thread data are addressed relative to a register called thread environment block
pointer (THREADP), which is separate for each thread in the process. The thread
environment block may be allocated on the stack when a new thread is created.

The STACK, DATA, BSS, HEAP and THREADD data sections are preferably
kept together in one contiguous block in order to optimize caching and memory
management.

This model allows the program to access up to 8 GB of CODE, 2 GB of CONST,
2 GB of DATA, 2 GB of BSS, 2 GB of THREADD, an almost unlimited size of
STACK with 2 GB frames, and an almost unlimited amount of HEAP data. A
pointer to the CONST section is provided in the thread environment block in or-
der to access CONST data in the rare case that the distance between code and
data exceeds 2 GB or in order to avoid address relocation.

The end of the combined data memory block must have an unused space of the
same size as the maximum vector length. This will enable the restore_cp instruc-
tion to read more than necessary when restoring a vector of unknown length. It

will also allow a function that searches for the end of a zero-terminated string to
read one vector-length piece of the string at a time without causing access viola-
tion by reading into unavailable memory space.

85

Most microprocessor systems have the stack growing backward. The ForwardCom
system has the same, but mainly for a different reason. When a vector register

is saved on the stack, it is stored as the length followed by the amount of data
indicated by the length. When the vector register is restored (using the restore_cp
instruction), it is necessary to read the length followed by the data. The stack
pointer must point to the low end where the length is stored, otherwise it would
be impossible to find where the length is stored.

8.1 Thread memory protection

Each thread must have its own stack. The thread data (THREADD) may be
placed on this stack. The ForwardCom system allows inter-thread memory pro-
tection. The stack data of the main thread of a program is accessible to all its
child threads, but all other threads in the program can have private data which is
not accessible to any other threads, not even to the main thread. Any communi-
cation and synchronization between threads must use static memory or memory
belonging to the main thread.

It is recommended to use this inter-thread memory protection in all cases except
where legacy software requires one memory space shared by all threads.

Isolated memory blocks

It is possible to make a system function that allocates an isolated memory block
surrounded by inaccessible memory on both sides. Such a memory block, which
will be accessible only to a specific thread, can be used for example for an input
buffer in cases where security requirements are high. Each thread can have only
a limited number of such protected memory blocks because of the limited size of
the memory map.

8.2 Memory management

It is a design goal to minimize memory fragmentation and to minimize the need
for virtual address translation. Current designs often have very complicated mem-
ory management systems with multilevel address translation, large translation-
lookaside-buffers (TLB), and huge page tables. We want to replace the TLB,
which has a large number of fixed-size memory blocks, by a memory map with

a few memory blocks of variable size. In most cases, the main thread of an appli-
cation will only need three blocks of memory: CONST (read only), CODE (exe-
cute only), and the combined STACK+DATA+BSS+HEAP (read-write). A child
thread needs one more entry for its private stack. Similar blocks are defined for
system code.

A memory map with such a limited number of entries can easily be implemented
on the chip in a very efficient way and it can easily be changed on task switches.

86

Each process and each thread must have its own memory map. The memory is
not organized into fixed-size pages.

The memory map supports virtual address translation in the form of a constant
offset that defines the distance between the virtual address and the physical ad-
dress for each map entry. The hardware should not waste time and power on vir-
tual address translation when it is not used.

A limited number of extra entries are provided in the memory map to deal with
cases where the memory becomes fragmented, but memory fragmentation can be
avoided in most cases. The following techniques are provided to simplify memory
management and avoid memory fragmentation:

e There is only one type of function libraries which can be used for both static
and dynamic linking. These are linked with a mechanism that keeps the
CONST, CODE and DATA sections contiguous with the similar sections of
the main program in most cases. This technique is described on page [104]
below.

e The required stack size is calculated by the compiler and the linker so that
stack overflow can be avoided in most cases. This technique is described on

page [106]

e The operating system can keep statistical records of the heap use of each
program in order to predict the required heap size. The same technique can
be used for predicting stack use in cases where the required stack size can-
not be predicted exactly (e. g. recursive function calls).

The memory space may become fragmented despite the use of these techniques.
Problems that can result in memory fragmentation are listed below.

e Recursive functions can use unlimited stack space. We may require that the
programmer specifies a maximum recursion level in a pragma.

e Allocation of variable-size arrays on the stack using the alloca function in C.
We may require that the programmer specifies a maximum size.

e Runtime linking. The program can reserve space for loading and linking
function libraries at run time (see page . The memory may become
fragmented if the memory space reserved for this purpose turns out to be
insufficient.

e Script languages and byte code languages. It is difficult to predict the re-
quired size of stack and heap when running interpreted or emulated code.
It is recommended to use a just-in-time compiler instead. Self-modifying
scripts cannot be compiled. The same problem can occur with large user-
defined macros.

87

e Unpredictable number of threads without protection. The required stack
size for a thread may be computed in advance, but in some cases it may
be difficult to predict the number of threads that a program will generate.
Multiple threads will mostly share the same code sections, but they need
separate stacks. The stack of a thread can be placed anywhere in memory
without problems if inter-thread memory protection is used. But if memory
is shared between threads and the number of threads is unpredictable then
the shared memory space may become fragmented.

e Unpredictable heap size. Programs that process large amounts of data, e.
g. multimedia processing, may need a large heap. A heap can use discon-
tiguous memory, but this will require extra entries in the memory map.

e Lazy loading and code overlay. A large program may have certain code
units that are rarely used and loaded only when needed. Lazy loading can
be useful to save memory, but it may require virtual memory translation and
it may cause memory fragmentation. A straightforward solution is to imple-
ment such code units as separate executable programs.

e Hot patching, i. e. updating of code while it is running.

e Shared memory for inter-process communication. This requires extra entries
in the memory map as explained below.

e Many programs running. The memory can become fragmented when many
programs of different sizes are loaded and unloaded randomly or swapped to
memory.

A possible remedy against overflow of stack and heap is to place the STACK,
DATA, BSS and HEAP data together (in this order) in an address range with
large unused virtual address spaces below and above, so that the stack can grow
downwards and the heap can grow upwards into the vacant spaces. This method
can avoid fragmentation of the virtual address space, but not the physical address
space. Fragmentation of the physical address space can be remedied by moving
data from a memory block of insufficient size to another block that is larger. This
method has the cost of a time delay when the data are moved.

If runtime linking runs into memory problems and lack of memory map entries
then it is allowed to mix CONST and CODE sections together in a common sec-
tion with both read and execute access. If a library function contains constant
data that originate from an untrusted source, while the code is trusted, then it
is preferred to put the untrusted data into the DATA section rather than the
CONST section in order to prevent execution of malicious code placed in the
CONST section.

Shared memory can be used when there is a need to transfer large amounts of
data between two processes. One process shares a part of its memory with an-
other process. The receiving process needs an extra entry in its memory map to
indicate read and/or write access rights to the shared memory block. The process

88

that owns the shared memory block does not need any extra entry in its mem-
ory map. There is a limit to how many shared memory blocks an application can
receive access to, because we want to keep the memory map small. If one pro-
gram needs to communicate with a large number of other programs then we can
use one of these solutions: (1) let the program that needs many connections own
the shared memory and give each of its clients access to one part of it, (2) run
multiple threads in (or multiple instances of) the program that needs many con-
nections so that each thread has access to only one shared memory block, (3) let
multiple communication channels use the same shared memory block or parts of
it, (4) communicate through function calls, (5) communicate through network
sockets, or (6) communicate through files.

Executable memory cannot be shared between different applications. The mecha-
nism of interprocess calls must be used if one application needs to call a function
in another application. This is described on page [94]

We can probably keep memory fragmentation so low, by using the principles dis-
cussed here, that a relatively small memory map for each thread will be sufficient
to cover normal cases. This will be much more efficient than the large TLB and
multilevel address translation of current designs. It will save silicon space and
power, and we can avoid the cost of TLB misses and page faults, and it will make
task switches very fast.

89

Chapter 9
System programming

The system instructions have not been fully defined yet. There is more work to
do making an efficient system design. However, the first experimental implemen-
tations of ForwardCom will be without operating system so the system design
does not have to be fixed yet. It is preferred to spend more time on optimizing
the system design rather than to define a complete standard at this early stage of
development.

There should be at least three different levels of privilege:

e The system core has the highest privilege level. Memory management and
thread scheduling takes place here. This is the only part that can modify
memory maps and control access rights at the lower levels.

e Device drivers and system plugin modules have carefully controlled access
rights. A structure similar to the memory map (see page gives a device
driver access to the particular range of input/output ports and system regis-
ters that it needs. A user application can give a device driver read and write
access to a specific range of the data memory it owns. This is done through
the system call instruction. A device driver has no access to the code mem-
ory of the application that calls it. This means that callback function point-
ers cannot be used with system calls.

e An application program has access to only the memory that is allocated
to it or shared with it. Memory belonging to a thread is usually not shared
with other threads in the same process. Application programs have access
to a few system registers and no input/output ports.

Transitions between these levels are managed by the system call and system re-
turn instructions and by traps and interrupts.

There are various system registers for control purposes. In addition, there are two
sets of registers used for temporary storage, one set for the device driver level and
one for the system core level. The temporary registers for the device driver level

90

are cleared for security reasons every time a device driver is called. These registers
are used mainly for temporary saving of the general purpose registers.

9.1 Memory map

There are three kinds of memory access: read, write and execute access. These
kinds of access are separate, but can be combined. For example, execute access
does not imply read access. Write access and execute access should not normally
be combined, because self-modifying code is discouraged.

The memory map is stored in the CPU chip. Each entry has three fields: A virtual
address (up to 64 bits), access rights (3 bits), and an addend for address trans-
lation (up to 64 bits). There is no memory paging. Instead, the memory blocks
have variable sizes.

The entries in the memory map must be kept sorted at all times so that each
memory block ends where the next block begins. The addresses must be divis-
ible by 8. Each thread has its own memory map. A typical memory map for an
application thread may look like this.

Table 9.1: Example of memory map

Start address | Access Addend Comment

0x10000 Read 0 CONST section

0x10100 Execute 0 CODE section

0x10800 None 0 Belongs to other processes

0x20000 Read, Write 0 Main STACK, DATA, BSS, and HEAP sections

0x24000 None 0 Belongs to other processes

0x30000 Read, Write 0 Thread STACK, thread environment block, and
tread static data

0x32000 None 0 The rest belongs to other processes

There may be a few further entries for memory blocks shared between processes
and for secure isolated memory blocks. A virtual memory block may have multiple
entries in case the memory becomes fragmented. The addends are used for keep-
ing the virtual addresses of the block contiguous while the physical addresses are
noncontiguous. The start addresses are virtual memory addresses.

The size of the memory map is variable. The maximum size is implementation
dependent. There are at least three memory maps on the chip, one for each privi-
lege level. This makes transitions between the levels fast. The chip space used for
memory maps may be reconfigurable so that the memory maps of multiple pro-
cesses can remain on the chip in case the memory maps are small. This makes
task switching faster.

The memory maps are controlled at the system core level. The instructions read_memory_map

and write_memory_map use the vector loop mechanism for fast manipulation of
memory maps.

91

The methods described on page [86] for avoiding memory fragmentation are impor-
tant for keeping the memory maps small.

Task switches will be very fast because we have replaced the large page tables
and translation-lookaside-buffer (TLB) of traditional systems with a small on-chip
memory map. This makes the system suitable for real-time operating systems.

0.2 Call stack

It is possible to have either a unified stack for function data and return addresses
or two separate stacks. See page[7I] ForwardCom currently supports both sys-
tems. The two-stack system is safer and more efficient, while the single-stack
system may be used for small processors where the simpler single-stack system

is preferred.

The two-stack system has the call stack stored inside the CPU rather than in
RAM memory. A method is required for saving this stack to memory when it is
full. This method may be similar to the method used for saving the memory map,
as described above, using vector-size memory access. It should be possible to ma-
nipulate the call stack for task switches and for stack unrolling in the exception
handler.

9.3 System calls and system functions

Calls to system functions are made with a system call instruction (sys_call). The
system call instruction does not use addresses, but ID numbers. Each ID number
consists of a function ID in the lower half and a module ID in the upper half. The
module ID identifies a system module or device driver. The system core has ID =
0. Each part of the ID can be either 16 bits or 32 bits so that the combined ID is
either 32 bits or 64 bits.

System add-on modules and device drivers do not necessarily have fixed ID num-
bers because this would require some central authority to assign these ID num-
bers. Instead, the program will have to ask for the ID number by giving the name
of the module. The functions within a module can have fixed or variable ID num-
bers.

There will be a system function (with a fixed ID number) which takes the names
of module and function as input and returns the ID number. The ID number can
be retrieved in this way before the first call to the function.

The ID number of a system function can be put into the program in three ways:

1. The most important system functions have fixed ID numbers which can be
inserted at compile time.

2. The ID number can be found at load time in the same way as load-time
linking works. This is described on page The loader will find the ID

92

number and insert it in the code before running the program.

3. The ID number is found at run time before the first call to the desired func-
tion.

The calling convention for system functions is the same as for other functions,
using registers for parameters and for return value. The registers used for parame-
ters are determined by the general calling convention. The calling conventions are
described on page The parameter registers should not be confused with the
operands for the system call instruction.

The system call instruction has three operands. The first operand is the combined
ID, contained in a register (RT) or an immediate constant. The second operand
(RD) is a pointer to a memory block that may be used for transferring data be-
tween the calling program and the system function. The third parameter (RS) is
the size of this memory block. The last two parameters must be divisible by 8.

The calling thread must have access rights to the memory block that it shares
with the system function. This can be read access or write access or both. These
access rights are transferred to the system function. The system function has no
access rights to any other part of the application’s memory.

It is not possible to use callback function pointers with a system call because
executable memory cannot be shared with a system function. Instead, the sys-
tem function can call an exported function provided by the application, using the
method for inter-process calls, described below.

Device driver functions should preferably have separate stacks. The system call
goes first to the system core which assigns a stack to the device driver function
and makes a memory map for it before dispatching the call to the desired func-
tion. Preferably, no stack is used during this dispatching. The two registers iden-
tifying a shared memory block are copied to special registers which are accessible
to the called function. The system function runs in the same thread as the appli-
cation that called it, but not with the same stack.

The old values of instruction pointer, stack pointer, DATAP and memory map are
saved in system registers, to be restored by the system return instruction.

System functions, device drivers and interrupt handlers are allowed to use all gen-
eral purpose registers and vector registers if they are saved and restored according
to the normal calling conventions. Interrupt handlers must save and restore all
registers they use.

A method is provided to get information about the register use of system func-
tions so that it is possible to call them using the register usage conventions of
either method 1 or method 2, described on page [10I] The stack use of system
functions is irrelevant for the caller because they do not use the stack of the call-
ing application program.

Some important system functions must be standardized and must be available in
all operating systems. This will make it possible, for example, to make a third-

93

party function library that works in all operating systems, even if this library needs
to call system functions. It will also make it easier to adapt a program for differ-
ent operating systems. The list of system functions that might be standardized
includes functions for thread creation, thread synchronization, setting thread pri-
ority, memory allocation, time measurement, system information, access to envi-
ronment variables, etc.

There should be a selection of system libraries providing the most common user
interface forms, such as graphical user interface, console mode, and server mode.
These user interface system libraries should be provided for each operating sys-
tem that the architecture can run on, so that the same executable program can
run in different operating systems simply by linking with the appropriate user in-
terface library at load time. Such user interface libraries may be based on existing
platform-independent GUI libraries such as, e. g., wxWidgets or QT. All user in-
terface libraries must support the error_message function mentioned below.

9.4 Inter-process calls

Inter-process calls are mediated by a system function. This works in the following
way. An application program can export a function with an entry in its executable
file header. Another application can get access to this exported function by call-
ing a system function that checks for permission and switches the memory map,
the DATAP and THREADP registers and the stack pointer before calling the ex-
ported function, and switches back before returning to the caller. The call will
appear as a separate thread to the called program. The general purpose registers
and vector registers can be used for parameters and return value in the same was
as for normal functions. This mechanism does not generate any shared memory
between caller and callee. Therefore, the exported function must use only simple
types that fit into registers for its parameters and return type. A block of memory
can be shared between the two processes as described on page [88]

9.5 Error message handling

There is a need for a standardized way of reporting errors that occur in a pro-
gram. Many current systems fail to satisfy this need, or they use methods that
are not portable or thread-safe. In particular, the following situations would bene-
fit from such a standard.

1. A function library detects an error, for example an invalid parameter, and
needs to report the error to the calling program. The calling program will
decide whether to recover from the error or terminate.

2. A trap is generated because of a numerical error. The program fails to
catch it as an exception, or the programming language has no support for
structured exception handling. The operating system must make an infor-
mative error message.

94

3. A program can run in different environments that require different forms of
error handling.

4. A function library in source code form, a class library, or any other piece of
code needs to report an error without knowing which user interface paradigm
is used (e. g. console mode or graphical user interface). It needs a stan-
dardized way of reporting the error to the operating system or to the user
interface framework, which must present an error message to the user in the
way that is appropriate for the user interface (e. g. pop up a message box,
print to stderr, print to a log file, or send a message to an administrator).

It is proposed to define a standard library function named error_message for this
purpose. All user interface frameworks must define this function. It is possible to
automatically choose between different versions of this function at run time de-
pending on system settings, using the function dispatch feature described on page
The main program may override this function by defining its own function
with the same name.

The error_message function must have the following parameters: a numerical error
code, a string pointer giving an error message, and another string pointer giving
the name of the function where the error occurred. These strings are coded as
zero-terminated UTF-8 strings. The error message is in the English language by
default. It is not reasonable to require support for many different languages (see
this link| for a discussion of problems with internationalization). Instead, a manual
in the desired language can contain a list of error codes.

The error message string may include numerical values and diagnostic informa-
tion, such as the value of a parameter that is out of range.

The error_message function may or may not return. If it returns then the function
that called it must return in a graceful way. The error_message function may al-
ternatively terminate the application or it may raise an exception or trap which is
handled by the operating system in case the exception is not caught by the pro-
gram.

95

https://en.wikibooks.org/wiki/Usability_for_Nerds/Software/Internationalization

Chapter 10

Standardization of ABI and
software ecosystem

The goal of ForwardCom is a vertical redesign that defines new standards not
only for the instruction set, but also for the software that uses it. This will have
the following advantages.

e Different compilers will be compatible. The same function libraries can be
used with different compilers.

e Different programming languages will be compatible. It will be possible to
compile different parts of a program in different programming languages.
It will be possible to compile a function library in a programming language
different from the program that uses it.

e Debuggers, profilers and other development tools will be compatible.

e Different operating systems will be compatible. It will be possible to use
the same function libraries in different operating systems, except if they use
system-specific functions.

The previous chapter described standardization of system calls, system functions,
and error messaging. The present chapter discusses standardization of the follow-
ing aspects of the software ecosystem.

e Compiler support.
e Binary data representation.

e Function calling conventions.

Register usage conventions.

e Name mangling for function overloading

96

Binary format for object files and executable files.

Format and link methods for function libraries.

Exception handling and stack unrolling.

Debug information.

Assembly language syntax.

10.1 Compiler support

Compilers can have three different levels of support for variable-length vector reg-
isters.

Level 1

The compiler will not use variable-length vectors. The compiler can call a vector
function in a function library with a scalar parameter if the function is not avail-
able in a scalar version.

Level 2

The compiler can call vector functions, but not generate such functions. The
compiler can vectorize a loop automatically and call a vector library function from
such a loop.

Level 3

Full support. The compiler supports data types for variable-length vectors. These
data types can be used for variables, function parameters and function returns.
Variable-length vectors can not be included in structures, classes or unions be-
cause such composite types must have known sizes. Support for variable-length
vectors in static and global variables is optional. General operations on variable-

length vectors can be specified explicitly, including options for applying boolean
vector masks.

Other compiler features

The compiler may support pointer arithmetic on function pointers in order to
write compact call tables with relative addresses explicitly. The difference between
two function pointers should be scaled by the code word size, which is 4. Without
this feature, the function pointers have to be type cast to integer pointers and
back again.

The compiler may have support for detecting integer and floating point overflow
and other numerical errors in try-catch blocks using one of the methods discussed

on page[75]

97

The compiler may support array bounds checking, using the indexed addressing
mode with bounds or the conditional trap instruction.

10.2 Binary data representation

Data are stored in little-endian form in RAM memory. See page [71] for the ratio-
nale.

Integer variables are represented with 8, 16, 32, 64, and optionally 128 bits, signed
and unsigned. Signed integers use 2's complement representation. Integer over-
flow wraps around, except in saturated arithmetic instructions.

Floating point numbers are coded with single (32-bit), double (64-bit) and op-
tionally quadruple (128-bit) precision, following the IEEE Standard 754-2008 or
any later standard. Half precision (16-bit) is optionally used in immediate con-
stants. Calculation on half precision is not supported, but conversion between half
and single precision is optionally supported.

Floating point NAN variables can contain diagnostic information about the cause
of errors as discussed on page

Boolean variables are stored as integers of at least 8 bits with the values 0 and 1
for FALSE and TRUE. Only bit 0 of the boolean variable is used, while the other
bits are ignored. This rule makes it possible to use boolean variables as masks
and to implement boolean functions such as AND, OR, XOR, and NOT in an ef-
ficient way with simple bitwise instructions, rather than the method used in many
current systems that have a branch for each variable to check if the whole integer
is nonzero. A branch instruction is needed in the compilation of expressions like
(A && B) and (A || B) only if the evaluation of B has side effects.

All variables not bigger than 8 bytes should be kept at their natural alignment.

Arrays not smaller than 8 bytes must be aligned to addresses divisible by 8. It
may be recommended to align large arrays by the cache line size.

Multidimensional arrays are stored in row-major order, except where the program-
ming language makes this impossible.

Text strings may be stored in language-dependent forms, but a standardized form
is needed for system functions and for functions that are intended to be compat-
ible with all programming languages. The proposed standard uses UTF-8 encod-
ing. The length of the string may be determined by a terminating zero or a length
specifier, or both. The rationale is this. The CPU processing time is insignificant
for text strings of a length suitable for human reading. The priority is therefore on
compactness. Compactness matters if the string is stored in a file or transmitted
over a network. UTF-8 is more compact than UTF-16 in most cases, though less
compact for some Asian languages. UTF-8 is the most common encoding used on
the Internet.

98

10.3 Further conventions for object-oriented lan-
guages

Object oriented languages require further standards for the binary representation
of special features such as virtual function tables, runtime type identification,
member pointers, etc.

These details must be standardized within each programming language for the
sake of compatibility between different compilers, and if possible also between
different programming languages that have compatible features.

Member pointers should be implemented in a way that prioritizes good perfor-
mance in the general case where only a simple offset (to data) or a pointer (to a
function) is required, while additional information for contrived cases of multiple
inheritance is added only when needed.

10.4 Function calling convention

Function calls will use registers for parameters as much as possible. Integers of up
to 64 bits, pointers, references, and boolean scalars are transferred in general pur-
pose registers. Vector parameters can have variable length. Floating point scalars,
vectors of any type with a fixed length of up to 16 bytes, and vectors of variable
length are transferred in vector registers.

The first 16 parameters to a function that fit into a general purpose register are
transferred in register rO — r15. The first 16 parameters that fit into a vector reg-
ister are transferred in vO — v15. The length of a variable-length vector parameter
is contained in the same vector register that contains the data.

Composite types are transferred in vector registers if they can be considered "sim-
ple tuples” no bigger than 16 bytes. A simple tuple is a structure or class or en-
capsulated array for which all non-static elements have the same type, which is
not a pointer. A union is treated as a structure according to its first element.

Parameters that do not fit into a single register are transferred by a pointer to a
memory object allocated by the caller. This applies to: structures and classes with
elements of different types, or bigger than 16 bytes. It also applies to objects that
require special handling such as a non-standard copy constructor or destructor,
and objects that require extra implicit storage such as tables of virtual member
functions. It is the responsibility of the caller to call any copy constructor and
destructor.

If there are not enough registers for all parameters then the additional parameters
are provided in a list, which can be stored anywhere in memory. A pointer to this
parameter list is transferred in a general purpose register. Such a list is also used

if there is a variable argument list. There can be no more than one parameter list,
as the same list is used for all purposes.

99

The rules for a parameter list are as follows. A parameter list is used if there are
more than 16 parameters that fit into a general purpose register, if there are more
than 16 parameters that fit into a vector register, or if there is a variable argu-
ment list. If there are less than 16 general purpose parameters then these param-
eters are put in general purpose registers, and the next vacant general purpose
register is used as pointer to the list. If there are 16 or more general purpose pa-
rameters, and a parameter list is needed for any reason, then the first 15 general
purpose parameters are put in rO-r14, the list pointer is in r15, and the remaining
general purpose parameters are put in the list. If there are more than 16 vector
parameters then the first 16 vector parameters are put in v0-v15 and the remain-
ing vector parameters are put in the list. All parameters in the list are placed in
the order that they appear in the function definition, regardless of type. Variable
arguments are placed last in the list because they always appear last in a function
definition.

The list consists of entries of 8 bytes each. A general purpose parameter uses one
entry. A vector parameter with a constant size of 8 bytes or less uses one entry. A
vector parameter with a constant size of more than 8 bytes or a variable size uses
two entries in the list. The first entry is the length (in bytes) and the second en-
try is a pointer to an array containing the vector. A parameter that would not fit
into a register, if one was vacant, is transferred by a pointer in the list according
to the same rules as if the pointer was in a register.

The parameter list belongs to the called function in the sense that it is allowed to
modify parameters in the list if they are not declared as constant parameters. The
same applies to arrays and objects with a pointer in the list. The caller can rely
on parameters in the list being unchanged only if they are declared constant. The
caller must put the list in a place where it cannot be modified by other threads.

The function return value is in rO or v0, using the same rules as for function pa-
rameters. Multiple return values (if allowed by the programming language) are
treated as tuples if possible and returned in v0. Multiple return values of different
types may be returned in multiple registers, but it is generally preferred to treat
multiple return values as a structure for the sake of compatibility with other pro-
gramming languages that do not allow multiple return values.

A return value that does not fit into a register is returned in a space allocated by
the caller through a pointer transferred by the caller in rO and returned in r0. Any
constructor is called by the callee.

A "this" pointer for a class member function is transferred in r0, except if r0 is
used for a return object, where the “this” pointer is transferred in rl.
Rationale

It is much more efficient to transfer parameters in registers than on the stack.
The present proposal allows up to 32 parameters, including variable length vec-
tors, to be transferred in registers, leaving 15 general purpose registers and 16

100

vector registers for the function to use for other purposes while handing the pa-
rameters. This will cover almost all practical cases, so that parameters only rarely
need to be stored in memory.

Nevertheless, we must have precise rules for covering an unlimited number of pa-
rameters if the programming language has no limit to the number of parameters.
We are putting any extra parameters in a list rather than on the stack as most
other systems do. The main reason for this is to make the software independent
of whether there is a separate call stack or the same stack is used for return ad-
dresses and local variables. The addresses of parameters on the stack would de-
pend on whether there is a return address on the same stack. The list method
has further advantages. There will be no disagreement over the order of param-
eters on the stack and whether the stack should be cleaned up by the caller or
the callee. The list can be reused by the caller for multiple calls if the parame-
ters are constant, and the called function can reuse a variable argument list by
forwarding it to another function. The function is guaranteed to return properly
without messing up the stack even if caller and callee disagree on the number of
parameters. Tail calls are possible in all cases regardless of the number and types
of parameters.

10.5 Register usage convention

Most systems have rules that certain registers have callee-save status. This means
that a function must save these registers and restore them before it returns, if
they are used. The caller can then rely on these registers being unchanged after
the function call.

Current systems have a problem with assigning callee-save status to vector regis-
ters. Future CPU versions may make the vector registers longer, and the instruc-
tions for saving the longer registers have not been defined yet. Some systems now
have callee-save status on part of a vector register because of poor foresight. It is
impossible in current systems to save a vector register in a way that will be com-
patible with future extensions.

This problem is solved by the ForwardCom design with variable vector length. It
is possible to save and restore a vector register of any length, even if this length
was not supported at the time the code was compiled. It is also possible to know
how much of a long vector register is actually used, because the length of a vec-
tor is saved in the register itself, so that we only need to save the part of the reg-
ister that is actually used. The save_cp and restore_cp instructions are designed
for this purpose (see page . Unused vector registers will use only little space
for saving.

It still takes a lot of cache space to save the vector registers if they are long.
Therefore, we want to minimize the need for saving registers. It is proposed to
have two different methods to choose between. These methods are explained
here.

101

Method 1

This is the default method which can be used in all cases, but not the most effi-
cient method.

The rule is simply that registers r16 — r31 and v16 — v31 have callee-save status.

A function can use registers r0 — r15 and v0 — v15 freely. Sixteen registers of each
type will be sufficient for most functions. If the function needs additional regis-
ters, it must save them.

All system registers and special registers have callee-save status, except in func-
tions that are intended for manipulating these registers.

Method 2

It will be more efficient if we actually know which registers are used by each func-
tion. If function A calls function B, and A knows which registers are used by B,
then A can simply choose some registers that are not used by B for any data that
it needs to save across the call to B. Even a long chain of nested function calls
can avoid the need to save any registers as long as there are enough registers.

If function A and B are compiled together in the same process then the compiler
can easily manage this information. But if A and B are compiled separately, then
we need to store the necessary information about which registers are used. This is
possible with the object file format described on page The information about
register use must be saved in the compiled object file or library file, not in some
other file that could possibly come out of sync.

Function B is preferably compiled first into an object file. This object file must
contain information about which registers are modified by function B. The nec-
essary information is simply a 64-bit number with one bit for each register that
is modified (bit 0-31 for r0-r31, and bit 32-63 for v0-v31). Any registers used for
parameters and return value are also marked if they are modified by the function.

When function A is compiled next, the compiler will look in the object file for B
to see which registers it modifies. The compiler will choose some registers not
modified by B for data that need to be saved across the call to B. Registers that
are modified by B can advantageously be used in A for temporary variables that
do not need to be saved across the call to B. Likewise, it will be advantageous
to use the same register for multiple temporary variables if their live ranges do
not overlap, in order to modify as few registers as possible. The object file for

A will contain a list of registers modified by A, including all registers modified

by B and by any other function that A may call. The object file for A contains

a reference to function B. This reference must contain information about which
registers A expects B to modify. If B is later recompiled, and the new version of
B modifies more registers, then the linker will detect the discrepancy and prompt
for a recompilation of A.

If, for some reason, A is compiled before B or no information is available about B

102

when A is compiled, then the compiler will have to make assumptions about the
register use of B. The default assumption is as specified in method 1. Function

A may later be recompiled if B violates these assumptions, or simply to improve
efficiency.

If two functions A and B are mutually calling each other then the easiest solution
is to rely on method 1. The functions should still include the information about
register use in their object files.

The compiler should preferentially allocate the lower registers first in order to
minimize the problem that different library functions use different registers. It may
optionally skip r7 and v7 for the caller to use for masks.

The main program function is allowed to use method 2 and to modify all registers
if it includes the necessary information in its object file.

Object files that are contained in a function library must include the information
about register use.

System functions and device drivers cannot be accessed in the same way as nor-
mal library functions (see page . System functions must obey the rules for
method 2, but the system should provide a method for getting information about
the register use of each system function. This can be useful for just-in-time com-
pilers.

10.6 Name mangling for function overloading

Programming languages that support function overloading use internal names
with prefixes and suffixes on the function names in order to distinguish between
functions with the same name but different parameters or different classes or
namespaces. Many different name mangling schemes are in use, and some are
undocumented. It is necessary to standardize the name mangling scheme in order
to make it possible to mix different compilers or different programming languages.

The most common name mangling schemes are Microsoft and Gnu. The Mi-
crosoft scheme uses characters that cannot occur in function names (?@$). This
prevents name clashes, but makes it impossible to call the mangled name directly
or to translate e. g. C++ to C. The Gnu scheme generates mangled names that
look unwieldy, but contain no special characters that prevent calling the mangled
name directly. Therefore, the proposal is to use the Gnu mangling scheme (ver-
sion 4 or later) with necessary additions for variable-length vectors, etc.

Functions with mangled names may optionally supplement the mangled name
with the simple (non-mangled) name as a weak public alias in the object file.

This makes it easier to call the function from other programming languages with-
out name mangling. The weak linking of the alias prevents the linker from making
error messages for duplicate names, unless a call to the name is ambiguous.

103

10.7 Binary format for object files and executable
files

The executable file format must be standardized. The most flexible and well-
structured format in common use is probably ELF. It is proposed to use ELF for-
mat for object files, function libraries, and executable files.

The details of an ELF format for ForwardCom are specified in a file named elf_forwardcom.h.
This specification includes details for section types, symbol types, relocation types,

etc. Additional information about register use (see page and stack use (see

page is added to the file format.

File names must have extensions that indicate their type. It is proposed to use
the following extensions. Assembly code: .as, object file: .ob, library file: .li, exe-
cutable file: .ex.

10.8 Function libraries and link methods

Dynamic link libraries (DLLs) and shared objects (SOs) are not used in the For-
wardCom system. Instead, we will use only one type of function libraries that can
be used in three different ways:

1. Static linking. The linker finds the required functions in the library and
copies them into the executable file. Only the parts of the library that are
actually needed by the specific main program are included. This is the nor-
mal way that static libraries are used in current systems (.lib files in Win-
dows, .a files in Unix-like systems such as Linux, BSD, and Mac OS).

2. Load-time linking. The library may be distributed separately from the ex-
ecutable file. The required parts of the library are loaded into memory to-
gether with the executable file, and all links between the main executable
and the library functions are resolved by the loader in the same way as for
static linking.

3. Run-time linking. The running program calls a system function that returns
a pointer to the library function. The required function is extracted from
the library and loaded into memory, preferably at a memory space reserved
for this purpose by the main program. Any reference from the newly loaded
function to other functions, whether already loaded or not, can be resolved
in the same way as for static linking.

These methods will improve the performance and remedy many of the problems
that we encounter with the traditional DLLs and SOs. A typical program in Win-
dows and Unix systems will require several DLLs or SOs when it is loaded. These
dynamic libraries will all be loaded into each their memory block, using an integral
number or memory pages each, and possibly scattered over the memory space.

104

This leads to a waste of memory space and poor caching. A further performance

disadvantage with shared objects is that they use procedure linkage tables (PLT)

and global offset tables (GOT) for all accesses to functions and variables in order
to support the rarely used feature of symbol interposition. This requires a lookup
in the PLT or GOT for every access to a function or variable in the library, includ-
ing internal references to globally visible symbols.

The ForwardCom system replaces the traditional dynamic linking with method 2
above, which will make the code just as efficient as with static linking because
the library sections are contiguous with the main program sections, and all access
is immediate with no intermediate tables. The time required to load the library
will be similar to the time required for dynamic linking because the bottleneck will
be disk access, not calculation of function addresses.

A DLL or SO can share its code section (but not its data section) between multi-
ple running programs that use the same library. A ForwardCom library can share
its code section between multiple running instances of the same program, but not
between different programs. The amount of memory that is wasted by possibly
loading multiple instances of the same library code is more than compensated for
by the fact that we are loading only the part of the library that is actually needed
and that the library does not require its own memory pages. It is not uncommon
in Windows and Unix systems to load a dynamic library of one megabyte and use
only one kilobyte of it.

The load-time linking (method 2 above) is efficient in the ForwardCom system
because of the way relative addresses are used. The main program typically con-
tains a CONST section immediately followed by a CODE section. The CONST
section is addressed relative to the instruction pointer so that these two sections
can be placed anywhere in memory as long as they have the same position rela-
tive to each other. Now, we can place the CONST section of the library function
before the CONST section of the main program, and the CODE section of the
library function after the CODE section of the main program. We don’t have to
change any cross-references in the main program. Only cross references between
the main program and the library function and between the CODE and CONST
sections of the library function have to be calculated by the loader and inserted in
the code.

A library function does not necessarily have any DATA and BSS sections. In fact,
a thread-safe function has little use of static data. However, if the library func-
tion has any DATA and BSS sections, then these sections can be placed anywhere
within the + 2GB range of the DATAP pointer. The references in the library
function to its static data have to be calculated relative to the point that DATAP
points to; but no references to data in the main program have to be modified
when a library is added as long as DATAP still points to the border between the
DATA and BSS sections of the main program.

The combined main program and library file can now be loaded into any vacant
spaces in memory. It will need only three entries in the memory map: (1) the

105

combined CONST sections of library and main program, (2) the combined CODE
sections of main program and library functions, and (3) the combined STACK,
DATA, BSS, and HEAP of the main program and the library functions.

Run-time linking works slightly differently. The reference from the main program
to the library function goes through a function pointer that is provided when the
library is loaded. Any references the other way — from the library function to func-
tions or global data in the main program — can be resolved in the same way as for
method 1 and 2 or through pointer parameters to the function. The main pro-
gram should preferably reserve space for the CONST, CODE and DATA/BSS
sections of any libraries that it will load at run time. The sizes of these reserved
spaces are provided in the header of the executable file. The loader has consid-
erable freedom to place these sections anywhere it can in the event that the re-
served spaces are insufficient. The only requirements are that the CONST sec-
tion of the library function is within a range of + 2GB of the CODE section of
the library, and the DATA and BSS sections of the library are within &= 2GB of
DATAP. The library function may be compiled with a compiler option that tells

it not to use DATAP. The function will load the absolute address of its DATA
section into a general purpose register and access its data with this register as
pointer.

10.9 Library function dispatch system

Newer versions of Linux have a feature called Gnu indirect function which makes
it possible to choose between different versions of a function at load time depend-
ing on, for example, the microprocessor version. This feature will not be copied
in the ForwardCom system because it relies on a procedure linkage table (PLT).
Instead, we can make a dispatcher system to be used with load-time linking. The
library can contain a dispatch function which tells which version of a library func-
tion to load. The loader will first load the dispatch function and call it. The dis-
patch function returns the name of the chosen version of the desired function.
The loader then unloads the dispatch function and links the chosen function into
the main program. The dispatch function must have access to information about
the hardware configuration, command line parameters, environment variables, op-
erating system, user interface framework, and anything else that it might need to
choose which version of the function to use.

10.10 Predicting the stack size

In most cases, it is possible to calculate exactly how much stack space an applica-
tion needs. The compiler knows how much stack space it has allocated in each
function. We only have to make the compiler save this information. This can

be accomplished in the following way. If a function A calls a function B then we
want the compiler to save information about the difference between the value of

106

the stack pointer when A is called and the stack pointer when B is called. These
values can then be summed up for the whole chain of nested function calls. If
function A can call both function B and function C then each branch of the call
tree is analyzed and the value for the branch that uses most stack space is used.
If a function is compiled separately into its own object file, then the information
must be stored in the object file.

A function can use any amount of memory space below the address pointed to
by the stack pointer (a so-called red zone) if this is included in the stack size re-
ported in the object file, provided that the system has a separate system stack.

The amount of stack space that a function uses will depend on the maximum
vector length if full vectors are saved on the stack. All values for required stack
space are linear functions of the vector length: Stack_frame_size = Constant +
Factor - Max_vector_length. Thus, there are two values to save for each func-
tion and branch: Constant and Factor. We need separate calculations for each
thread and possibly also information about the number of threads. If there are
two stacks then we need to save separate values for the call stack and the data
stack. The size of the call stack does not depend on the maximum vector length.

The linker will add up all this information and store it in the header of the exe-
cutable file. The maximum vector length is known when the program is loaded, so
that the loader can finish the calculations and allocate a stack of the calculated
size before the program is loaded. This will prevent stack overflow and fragmen-
tation of the stack memory. Some programs will use as many threads as there

are CPU cores, for optimal performance. It is not essential, though, to know how
many threads will be created because each stack can be placed anywhere in mem-
ory if thread memory protection is used (see page .

In theory, it is possible to avoid the need for virtual address translation if the fol-
lowing four conditions are met:

e The required stack size can be predicted and sufficient stack space is allo-
cated when a program is loaded and when additional threads are created.

e Static variables are addressed relative to the data section pointer. Multiple
running instances of the same program have different values in the data
section pointer.

e The heap manager can handle fragmented physical memory in case of heap
overflow.

e There is sufficient memory so that no application needs to be swapped to a
hard disk.

A possible alternative to calculating the stack space is to measure the actual
stack use the first time a program is run, and then rely on statistics to predict

107

the stack use in subsequent runs. The same method can be used for heap space.
This method is simpler, but less reliable. The calculation of stack requirements
based on the compiler is sure to cover all branches of a program, while a statisti-
cal method will only include branches that have actually been used.

We may implement a hardware register that measures the stack use. This stack-
measurement register is updated every time the stack grows. We can reset the
stack-measurement register when a program starts and read it when the program
finishes. We don't need a hardware register to measure heap size. This informa-
tion can be retrieved from the heap manager.

These proposals can eliminate or reduce memory fragmentation in many cases so
that we only need a small memory map which can be stored on the CPU chip.
Each process and each thread will have its own memory map. However, we can-
not completely eliminate memory fragmentation and the need for virtual memory
translation because of the complications discussed on page

10.11 Exception handling, stack unrolling and de-
bug information

Executable files must contain information about the stack frame of each function
for the sake of exception handling and stack unrolling for programming languages
that support structured exception handling. It should also be used for program-
ming languages that do not support structured exception handling in order to fa-
cilitate stack tracing by a debugger.

This system should be standardized, and both single stack and dual stack systems
should be supported. It is recommended to use a table-based method that does
not require a stack frame register.

Debuggers need information about line numbers, variable names, etc. This infor-
mation should be included in object files when requested. The debug information
may be copied into the executable file or saved in a separate file which is stored
together with the executable file. It is yet to be decided which system to use.

10.12 Assembly language syntax

The definition of a new instruction set should include the definition of a standard-
ized assembly language syntax. The syntax should be suitable for human process-
ing, not only for machine processing. Mnemonic names should be long enough

to make sense. Instructions should have the destination operand first. We must
avoid a situation similar to the x86 environment where many different syntaxes
are in use, with different instruction names and different orders of the operands.

The assembly code has one instruction on each line, consisting of an instruc-
tion mnemonic and its operands. It is proposed to add suffix codes to instruc-

108

tion mnemonics, separated by a dot, to indicate the operand type: 8, 16, 32, 64,
128 for integer operand size, and f, d, q for single, double and quadruple preci-
sion floating point operands. Add a 'z’ to the integer operand type if the result
must be zero-extended into a 64-bit general purpose register. Without the 'z’, the
assembler will pick the shortest instruction regardless of whether the result may
overflow into additional bits. For example, add.16 r0,r0,1 may use a tiny instruc-
tion with 64 bit operand type that can overflow beyond 16 bits, while add.16z
r0,r0,1 must use an instruction with a 16-bit operand type to make sure that the
remaining bits of the general purpose register will be zero.

Memory operands are indicated with square brackets. The vector length spec-
ifier of a memory operand is indicated as “, length=register” after the address
operand. A mask register is indicated as “

", mask=register". Example:
add.f v0, vl, [r240x100, length=r3], mask=v4d
This will add the float vector vl and the vector memory operand with pointer r2,

offset 0x100 and length r3 (bytes) and save the result in vO, using mask v4.

"

An array operand is indicated as “(base register)+(index register)*(scale factor)”.
If there is a scale factor (# =+ 1) then the scale factor must match the operand
size indicated by the operand type suffix. A limit to the index is indicated with

“, limit=value". Example:

add.64 r0, rl, [r24r3%8, limit=999], mask=r4

This will load a 64-bit integer from an array of 1000 elements with base address
r2 and index r3, where the index is scaled by the operand size (64 bits = 8 bytes),
with a limit of r3 < 999, add the loaded number with the value of r1 and store
the result in r0, using mask r4.

The same instruction may alternatively be written in the style of a function:
r0 = add.64 (rl, [r24r3%8, limit=999], mask=r4)

Move instructions may conveniently be written simply with an equal sign, for ex-
ample:

r0 =rl ; copy general purpose register
r2 = OxFFFF ; set general purpose register to constant
v3 = [r4, length=r5] ; read memory operand into vector register

Comments are indicated with a semicolon or a double slash.

Traditional assemblers often have metaprogramming features such as macros, pre-
processing conditionals and preprocessing loops. The syntaxes used for these fea-
tures look like awkward ad hoc solutions without no overall logical structure. We
would prefer a syntax that makes a clear distinction between metaprogramming
and regular assembly code. The metaprogramming syntax should support integer
and floating point variables, strings, macros, conditionals and loops in a way that
resembles a structured programming language.

109

Chapter 11

Conclusion

The proposed ForwardCom instruction set architecture is a consistent, modular,
flexible, orthogonal, scalable and expansible instruction set offering a good com-
promise between the RISC principle that gives fast decoding, and the CISC prin-
ciple that gives more compact code and more work done per instruction. Each
instruction can be coded in many different variants with different operand types,
different memory addressing modes, scalars, vectors, predicates, masks and option
bits. Support for efficient vector processing and out-of-order execution is a basic
part of the design rather than a suboptimal patch added later as we have seen in
other systems.

General instructions, such as e. g. addition, can be coded in many different for-
mats with integer operands of different sizes and floating point operands of differ-
ent precisions. The operands can be scalars or vectors of any length. Operands
can be registers, immediate constants, or memory operands with different ad-
dressing modes. All in all, the same basic instruction can have many different
variants with the same operation code where other instruction sets have many
different instructions to cover the same diversity. This simplifies the hardware im-
plementation. The design also has plenty of space for single-format instructions
with fewer variants.

The instructions are designed so that the microprocessor pipeline can be simple
and efficient. All instructions fit into the same simple and logical template system
that will make both hardware and software simpler and more efficient.

The decoder front-end can load multiple instructions per clock cycle because it is
easy to detect the length of each instruction, and the decoder needs only distin-
guish between a few different instruction sizes. Actually, the only instruction size
that must be supported is single-word. It is possible to make a working program
with only single-word (32 bits) instructions, but it is highly recommended to also
support double-word instructions. Triple-word instructions is a convenience that
may be supported if it can be implemented without reducing the overall decoding
speed. Tiny instructions (two in one code word) are useful for making the code

110

more compact.

It is possible to add support for longer instructions in future extensions, but the
priority has been to avoid any bottleneck in the decoding of instruction length
(which is a serious bottleneck in the x86 architecture).

The code format is designed to be compact in order to save code cache space.
This compactness is obtained in several ways. The same instructions can be coded
in different sizes with two- and three-operand forms, different sizes of immediate
constants, shifted immediate constants, and relative addresses with different sizes
of offsets and scale factors, while avoiding absolute addresses that would require
64 bits for the address alone. It is always possible to choose the smallest version
of an instruction that fits the particular need. The load on the data cache can

be reduced by storing immediate constants in the code rather than in memory
operands.

Most instructions can have a mask register which is used for predication in scalar
instructions and masking in vector instructions. The same mask register is also
used for specifying various options such as rounding mode, exception handling,
etc., that would otherwise require extra bits in the instruction code.

The introduction of vector registers with variable length is an important improve-
ment over the most common current architectures. The ForwardCom vector sys-
tem has the following advantages:

e The system is scalable. Different microprocessors can have different maxi-
mum vector lengths with no upper limit. It can be used for small embedded
systems as well as large supercomputers with very long vectors.

e The same code can run on different microprocessors with different maxi-
mum vector lengths and automatically utilize the full vector capabilities of
each microprocessor.

e The code does not have to be recompiled when a new microprocessor ver-
sion with longer vectors becomes available. Software developers do not have
to maintain multiple versions of their software for different vector lengths.

e The software can save and restore a vector register in a way that is guaran-
teed to work with future processors with longer vectors. The inability to do
so is a big problem in current architectures.

e Only the part of a vector register that is actually used needs to be saved
and restored. Each vector register includes information about how many
bytes of it are used. Therefore, no unnecessary resources are wasted on sav-
ing a full-length vector if it is unused or only partially used.

e A special addressing mode supports a very efficient loop structure that will
automatically use the maximum vector length on all but the last iteration
of an array loop. The last iteration will automatically use a shorter vector
to handle the remaining array elements in case the array size is not divisible

111

by the maximum vector length. There is no need to handle the remaining
elements separately outside the main loop and no need to make separate
versions of the loop for different special cases.

e Functions can have variable-length vector registers as parameters. This
makes it easy for the compiler to vectorize loops that contain function calls.

e Instructions with vector register operands need no extra information about
the vector length because this information is included in the vector regis-
ters. This makes these instructions more compact. Instructions with vector
memory operands do need this extra information, though.

e The system takes into account the special needs of microprocessors with
very long vectors where transport delays across a vector may depend on the
vector length.

The memory model is flexible with relative addresses. Everything is position-
independent. Memory management is simpler than in many current systems with
less need for virtual address translation. There is no translation lookaside buffer
(TLB) and no memory paging, but a simple on-chip memory map. Problems with
stack overflow, memory fragmentation, etc. can be avoided completely in most
cases. Task switches will be fast because of the small memory map and because
of the efficient mechanism for saving vector registers.

The principle that a fundamental redesign enables us to learn from history and
integrate late additions into the basic design also applies to the whole ecosystem
of ABI standards, function libraries, compilers, linkers and operating system. By
defining not only an instruction set, but also ABI standards, binary file formats,
interface library standards, etc. we get the further advantage that different com-
pilers and different programming languages will be compatible with each other.

It will be possible to write different parts of a program in different programming
languages and to use the same function libraries with all compilers. Even different
operating systems will be compatible to some degree. It is not an impossible goal
to be able to run the same binary program file in different operating systems.

We have also learned from past mistakes that it is difficult to predict future needs.
While the ForwardCom instruction set is intended to be flexible with room for fu-
ture extensions, we may ask whether the future will bring needs for new features
that are difficult to integrate into our design and standards. The best way to pre-
vent such unforeseen problems is to allow input and suggestions from the entire
community of hardware and software developers. It is important that the design
and standards are developed through an open process that allows everybody to
comment and make suggestions. We have already seen the problems of leaving
this to a commercial industry. The industry often makes short-term decisions for
marketing reasons. Patents, license restrictions and trade secrets harm compe-
tition and prevent niche operators from entering the market. New features and
instruction set extensions are kept secret for competitive reasons until it is too
late to change them in case the IT community comes up with better proposals.

112

The ForwardCom project is developed as a contribution to an open development
process based on the philosophy that these problems can be avoided through
openness and collaboration.

113

Chapter 12

Revision history

Version 1.02, 2016-06-25.

Name changed to ForwardCom.
Moved to github.

Various security features added.
Support for dual stack.

Some instruction formats modified, including more formats for jump and
call instructions.

System call, system return and trap instructions added.

New addressing mode for arrays with bounds checking.

Several instructions modified or added.

Memory management and ABI standards described in more detail.
Instruction list in comma separated file instruction_list.csv.

Object file format defined in file elf_forwardcom.h

Version 1.01, 2016-05-10.

The instruction set is given the name CRISCL.

The length of a vector register is stored in the register itself. The basic
code structure is modified as a consequence of this. Function calling con-
ventions are also simplified as a consequence of this.

All user-level instructions are defined.

The entire text has been rewritten and updated.

114

Version 1.00, 2016-03-22.

This document is the result of a long discussion on Agner Fog's blog| , starting
on 2015-12-27, as well as input from the RISC-V mailing list and the Opencores
forum.

Additional inspiraction was found in various sources listed on page [8]

Version 1.00 of this manual was published at www.agner.org/optimize!

115

http://www.agner.org/optimize/blog/read.php?i=421
http://www.agner.org/optimize

Chapter 13
Copyright notice

This document is copyrighted in 2016 by Agner Fog with a Creative Commons
attribution-share alike license. creativecommons.org/licenses/by-sa/4.0/legalcode.

116

http://creativecommons.org/licenses/by-sa/4.0/legalcode

	Introduction
	Highlights
	Background
	Design goals
	Comparison with other open instruction sets
	References and links

	Basic architecture
	A fully orthogonal instruction set
	Instruction size
	Register set
	Vector support
	Vector loops
	Maximum vector length
	Instruction masks
	Addressing modes

	Instruction formats
	Formats and templates
	Coding of operands
	Operand type
	Register type
	Pointer register
	Index register
	Offsets
	Limit on index
	Vector length
	Combining vectors with different lengths
	Immediate constants
	Mask register

	Coding of masks
	Format for jump, call and branch instructions
	Assignment of opcodes

	Instruction lists
	List of multi-format instructions
	List of tiny instructions
	List of single-format instructions
	Description of instructions
	Multi-format instructions
	Tiny format instructions
	Single-format instructions that use general purpose registers and special registers
	Single-format instructions with g. p. register input and vector register output, or vice versa
	Other single-format instructions that may change the length of a vector
	Single-format instructions that can move data horizontally from one vector element to another
	Other single-format vector instructions

	Common operations that have no dedicated instruction
	Unused instructions

	Other implementation details
	Endianness
	Implementation of call stack
	Floating point errors and exceptions
	Detecting integer overflow
	Multithreading
	Security features
	How to improve the security of applications and systems

	Programmable application-specific instructions
	Microarchitecture and pipeline design
	Memory model
	Thread memory protection
	Memory management

	System programming
	Memory map
	Call stack
	System calls and system functions
	Inter-process calls
	Error message handling

	Standardization of ABI and software ecosystem
	Compiler support
	Binary data representation
	Further conventions for object-oriented languages
	Function calling convention
	Register usage convention
	Name mangling for function overloading
	Binary format for object files and executable files
	Function libraries and link methods
	Library function dispatch system
	Predicting the stack size
	Exception handling, stack unrolling and debug information
	Assembly language syntax

	Conclusion
	Revision history
	Copyright notice

