
Test programs for measuring clock cycles and
performance monitoring

By Agner Fog. Copyright © 2000 - 2023. GPL v. 3. Last updated 2023-05-03.

Contents
1 Introduction ... 2
2 Instructions for running PMCTest under Windows: .. 2
3 Instructions for running PMCTest under Linux: .. 3

3.1 Necessary installations ... 3
3.2 Inserting the code to test ... 4

4 Testing inside another program ... 4
5 Test scripts .. 6

5.1 Running the test scripts under Linux ... 6
5.2 Running the test scripts under Windows ... 9
5.3 Interpreting the test results .. 9
5.4 How the scripts work ... 11

6 How to modify or update the test programs ... 12
7 Frequently Asked Questions ... 13

7.1 What is this test package for? ... 13
7.2 Can I use this as a benchmark test? ... 13
7.3 Can I use this test program as a profiler? .. 13
7.4 Which microprocessors are supported? .. 13
7.5 Which operating systems are supported? ... 13
7.6 Why do the scripts run best under Linux? ... 14
7.7 Why are the drivers needed? .. 14
7.8 Which compiler can I use? .. 14
7.9 Should I compile for debug or release mode? ... 14
7.10 Which assembler can I use? ... 14
7.11 Should I write the test code in C++ or assembly? ... 14
7.12 How does the time stamp counter work? .. 15
7.13 How do the performance monitor counters work? ... 15
7.14 What do I need the performance monitor counters for? .. 15
7.15 Why are there three versions of the driver?... 15
7.16 If the drivers do not work ... 16
7.17 Error compiling .cpp file .. 16
7.18 I get the error message: "Cannot open intrin.h" ... 16
7.19 I get the error message: No matching counter definition found 16
7.20 How can I define new performance monitor counter events? 16
7.21 Why is the first clock count higher than the rest? .. 16
7.22 How accurate are the counts? .. 17
7.23 Why do I get negative counts? .. 17
7.24 Where can I get the compilers?... 17
7.25 Where can I get the assemblers? .. 18
7.26 Can I run multiple threads? ... 18
7.27 How can the latency of memory read and write instructions be measured? 18
7.28 How can the latency be measured of an instruction that uses different types of
registers for input and output? .. 18

8 License .. 18

 2

1 Introduction
The file testp.zip contains a series of test programs for optimizing and testing small

pieces of code on x86 and x86-64 family microprocessors. These test programs are
intended for testing small pieces of critical code, not for profiling a whole program. Note that
these test programs are intended for experts. You must have experience with low-level
programming and command line utilities to use these test programs. The test programs are
provided for free with no warranty or support.

The test programs use the Time Stamp Counter to count how many clock cycles a piece of
code takes and the Performance Monitor Counters to count instructions, micro-operations,
cache misses, branch mispredictions and other events relevant to optimization purposes.

The test programs work best under Linux. It is also possible to run the tests under Windows,
but this is more complicated.

The following test packages are included:

Filename Operating
system

Mode Lan-
guage

Time
stamp
counter

Program
monitor
counters

Micro-
proces-
sor

Use

PMCTest.zip Windows,
Linux

32, 64 C++,
asm

X X Intel,
AMD,
VIA

Advanced
testing

TestScripts.zip Linux 32, 64 C++,
asm

X - Intel,
AMD,
VIA

Automatic
test scripts

The basic test program is PMCTest. This program supports Linux and Windows, 32 and 64
bit mode, Gnu, Clang, and Microsoft C++ compilers, MASM, NASM and YASM assemblers,
Intel, AMD and VIA processors, and multithreading. You can insert a small piece of code
and test the performance of it.

TestScripts is a large collection of scripts to run from a bash prompt under Linux. These test
scripts are automatically testing all x86 instructions as well as other properties such as
cache latency, etc.

Other files included:

testp.pdf This file

DriverSrcWin.zip Source code for Windows driver used by PMCTest.zip.

DriverSrcLinux.zip Source code for Linux driver used by PMCTest.zip.

TestScripts.zip Scripts to run multiple tests with PMCTest.zip

2 Instructions for running PMCTest under Windows:
The PMCTest program works best under Linux, but it is also possible to run under 32-bit
and 64-bit Windows.

If you are using a 64-bit Windows system, then you have to disable the driver signature
enforcement. The way to do this depends on the Windows version. See, for example,
https://gearupwindows.com/how-to-disable-driver-signature-enforcement-on-windows-11-
10/
Remember to put the driver signature enforcement back on when you are finished testing.

https://gearupwindows.com/how-to-disable-driver-signature-enforcement-on-windows-11-10/
https://gearupwindows.com/how-to-disable-driver-signature-enforcement-on-windows-11-10/

 3

Run the IDE or test program as administrator. Alternatively, set
USE_PERFORMANCE_COUNTERS to zero if you do not need the performance monitor
counts.

Unpack PMCTest.zip into a separate folder. Use Microsoft Visual Studio or any other IDE.

Make a project that contains PMCTestA.cpp and one of the PMCTestB files. If your test code

is in C or CPP, use PMCTestB.cpp. If your test code is in assembly using NASM syntax,
then use the *.nasm source files. If you are using the MASM assembler, use the *.asm

files. There are 32-bit and 64-bit versions of the assembly files.

Place the driver files MSRDriver32.sys and MSRDriver64.sys in the same folder as the

compiled test program.

Insert the piece of code to test at the place ### Test code start ### in PMCTestB.*. Other

places where you may insert constants or initializations are marked with ###.

You can choose between different PMC counters. Insert the desired counter id's at
CounterTypesDesired in the PMCTestB.* file. The available counters are listed at the bottom

of PMCTestA.cpp. You may add your own counter definitions.

When you run the compiled test program you will get a list of TSC clock counts and PMC
counts for the test code you have inserted.

3 Instructions for running PMCTest under Linux:
The PMCTest program works under 32-bit and 64-bit Linux. It is recommended to use 64-bit
Ubuntu. You may boot the computer from a Linux USB stick if Linux is not installed on the
computer.

3.1 Necessary installations

Install a universal version of the Gnu C/C++ compiler with the command:

sudo apt-get install g++-multilib

Install the NASM assembler with the command:

sudo apt-get install nasm

If this fails or if you want the latest version of nasm, then you can get the latest release
candidate or the latest development snapshot from www.nasm.us. Get the source file nasm-

x.xx.xx.tar.gz and unpack it with

tar -xzf nasm*.tar.gz

Then go to the extracted folder and install it with the commands:

./configure

make

sudo make install

You may use the YASM assembler instead of NASM, but YASM is no longer updated.
These two assemblers are mutually compatible. Get the newest version of YASM from
http://yasm.tortall.net/Download.html and install it in the same way as explained above for
NASM.

http://www.nasm.us/
http://yasm.tortall.net/Download.html

 4

You also need to install the PMCTest driver in the following way:

Unpack DriverSrcLinux.zip to a separate folder. In that folder, do:

chmod a+x *.sh

make

sudo ./install.sh

Every time the computer has been restarted, you have to reinstall the driver with the
command:

sudo ./install.sh

You may also have to install "make" and "zip" if these programs are no already installed.

3.2 Inserting the code to test

The project consists of PMCTestA.cpp and PMCTestB.*. The PMCTestB.* file contains the

code to test. It is available in C++ and assembly. Use PMCTestB64.nasm for assembly in 64-

bit mode.

Insert the piece of code to test at the place marked ### Test code start ### in

PMCTestB.*. Other places where you may insert constants or initializations are marked with

###.

You can choose between different PMC counters. Insert the desired counter id's at
CounterTypesDesired in the PMCTestB.* file. The available counters are listed at the bottom

of PMCTestA.cpp. You may add your own counter definitions.

When you run the compiled test program you will get a list of TSC clock counts and PMC
counts for the test code you have inserted.

Make all script files executable if they are not already so, using the command:

chmod a+x *.sh

To compile and run the test program use c32.sh or c64.sh for C++ code, 32-bit and 64-bit

mode, or a32.sh or a64.sh for assembly code, using the NASM assembler.

4 Testing inside another program
Sometimes it is difficult to isolate the piece of code you want to test from its context. The
PMCTest program has an option to set up the performance monitor counters and leave
them on for another program to use. You can then add instructions inside your own program
to read the counters before and after the piece of code you want to test. The difference
between the two counter values gives the count for the code under test.

To turn on the counters, run the pmctest program with the command line parameter

startcounters. To turn off the counters again, use the command line parameter

stopcounters. You can override the counter definitions in the B file by adding counter

definition numbers on the command line, e.g.:

pmctest startcounters 1 9 100 311

This will set up four counters for core clock cycles (Intel only), instructions, micro-operations
and level-1 data cache misses. The output may look like this:

 5

Enabled 4 counters in each of 8 CPU cores

PMC number: Counter name:

0x40000001 Core cyc

0x40000000 Instruct

0x00000000 Uops

0x00000001 L1D Miss

Then you can read program monitor counter number 0x40000001 in your program to get the
core clock cycles.

In Linux: Compile the pmctest program as described above, and run it with the desired

command line parameters. Make sure the driver is installed. Wait a few seconds before
running the program that uses the counters.

In 64-bit Windows: Compile the pmctest program or use the precompiled pmctest.exe.

Make sure the driver file MSRDriver64.sys is in the same directory. Turn off driver

signature enforcement (Press F8 during boot) and run pmctest.exe as administrator.

Example script files startcounters.bat and stopcounters.bat are provided for

convenience.

The selected program monitor counters will be set up and enabled in all accessible CPU
cores for a maximum of 64 threads. The counters will usually stay on until the computer is
reset or goes into sleep mode. You should not leave the counters on for long periods of time
if you are running in a multiuser environment.

This example shows how to use the counters inside your own program:

#include "timingtest.h" // functions for reading counters

int main()
{
 const int numtests = 10; // number of test runs
 const int pmc_num = 0x40000001; // program monitor counter number
 int clockcounts[numtests]; // list of clock counts
 int pmccounts[numtests]; // list of PMC counts
 int clock1, clock2, pmc1, pmc2; // counter values before and after each test
 int i; // loop counter

 for (i = 0; i < numtests; i++) { // loop for repeated tests
 serialize(); // prevent out-of-order execution
 clock1 = (int)readtsc(); // read clock
 pmc1 = (int)readpmc(pmc_num);// read PMC

 FunctionToTest(); // your code to test

 serialize(); // serialize again
 clock2 = (int)readtsc(); // read again after test
 pmc2 = (int)readpmc(pmc_num);
 clockcounts[i] = clock2-clock1;// store differences in list
 pmccounts[i] = pmc2-pmc1;
 }

 // print out results
 printf("\nTest results\nclock counts PMC counts");
 for (i = 0; i < numtests; i++) {
 printf("\n%10i %10i", clockcounts[i], pmccounts[i]);
 }
 printf("\n");

 return 0;
}

 6

In this example, we are running the code to test 10 times in order to see if the counts are
stable. The first count is usually higher than the rest due to cache misses and branch
mispredictions.

Obviously, you should have a switch in your program to turn off testing in the final version.
Note that the program will raise an exception if trying to read a PMC counter when the
counters are not enabled. There is no way to test if the PMC counters are enabled other
than trying to read a counter and catch the possible exception.

You may get inconsistent results if the operating system moves a thread to another CPU
core during the timing test. The remedy against this is to fix the thread affinity to a specific
core when testing.

5 Test scripts
The file TestScripts.zip contains a lot of test scripts that I have used for testing

microprocessors and measure latencies, throughputs, etc. of all x86 instructions. Results
from these tests on different CPUs are listed in my instruction tables at
https://www.agner.org/optimize/#manuals

5.1 Running the test scripts under Linux

The test scripts work best under Linux. Use 64-bit Ubuntu and make the necessary
installations as described in chapter 3.1 above. Install the latest version of NASM.

Unpack TestScripts.zip to a separate folder.

Make all script files executable if they are not already so, using the command:

chmod a+x *.sh

Initialize the scripts by running

./init.sh

You can limit the tests to run only in 64 bit mode, if 32 bit mode is not available, by running
init64.sh instead of init.sh.

Now you can run the different test scripts. I keep modifying the scripts and making new
scripts as new generations of microprocessors have new features to test.

There are three categories of test scripts:

List based tests

These are tests for measuring the latency and throughput of each instruction based on a
comma-separated list of instructions to test with indication of operand types and test
methods. Each list is a *.csv file, and the bash script runlist.sh is used for running the

tests defined by each *.csv file. See runlist.sh for a description of the fields in the *.csv

files. The results of these tests will appear in a directory called results.

Script files for testing the latencies and throughputs

These are bash scripts with *.sh1 names. Many of these scripts have been superseded by

list based tests, but the old scripts are retained for reference. The results of these tests will
appear in a directory called results1.

https://www.agner.org/optimize/#manuals

 7

Script files for other purposes

These are bash scripts with *.sh2 names. They are used for testing other aspects of the

CPU architecture and pipeline and to test the performance of specific types of code. The
results of these tests will appear in a directory called results2.

Lists of test scripts

List-based tests for measuring latency, throughput, execution units or execution
ports for x86 and x86-64 application instructions

Script file Purpose
runlist.sh Run a list of tests in a comma-separated file *.csv
fvec1.csv Floating point vector move instructions
fvec2.csv Floating point vector permute instructions etc.
fvec3.csv Floating point vector conversion instructions
fvec4.csv Floating point vector arithmetic instructions
fvec5.csv Floating point vector mathematical instructions
fvec6.csv Floating point vector save/restore instructions etc.
ivec1.csv Integer vector move instructions. etc.
ivec2.csv Integer vector pack, unpack, etc.
ivec3.csv Integer vector permutation etc.
ivec4.csv Integer vector arithmetic instructions
ivec5.csv Integer vector logic instructions
gather.csv Gather and scatter instructions
int.csv Common general purpose register instructions, incomplete
int_misc.csv Miscellaneous later general purpose register instructions
maskinstr.csv Instructions on mask registers
misc512.csv Miscellaneous instruction set extensions past AVX512
stringvec.csv Integer vector string instructions
fp16.csv AVX512_FP16 instructions for half precision

The results of the list based tests *.csv scripts will appear in the folder named results.

Test scripts for measuring latency, throughput, execution units or execution ports
for x86 and x86-64 application instructions

Script file Purpose
int.sh1 Integer instructions for general purpose registers
32bitinstr.sh1 Instructions that are not available in 64-bit mode
pushpop.sh1 Push and pop instructions
shift.sh1 Shift and rotate instructions
mul.sh1 Integer multiplication instructions
div.sh1 Integer division instructions
misc_int.sh1 Miscellaneous integer instructions
strings.sh1 Integer string instructions and vector string instructions
new_int_instr.sh1 Integer instructions for SSE4.2 and later instruction sets
amd.sh1 Instructions that are only available on AMD processors
x87.sh1 x87 style floating point instructions
convers.sh1 General purpose and vector instructions where source and

destination use different register types or memory
convers2.sh1 AVX instructions where source and destination use different

register types or memory
ivec.sh1 Integer vector instructions
fvec.sh1 Floating point vector instructions including AVX instructions
misc_vect.sh1 Miscellaneous vector instructions

 8

fma.sh1 FMA3 and FMA4 instructions
avx2.sh1 AVX2 and later vector instructions
exec_domain.sh1 Measuring data transfer delays between instructions that

possibly use different execution units

The results of the *.sh1 scripts will appear in the folder named results1. Most instructions

are ordered according to the test method they require rather than by any logical criteria. Use
a text search tool to find the results for a specific instruction.

Test scripts for other purposes

Script file Purpose
AVX_states.sh2 Measure penalty of switching between different states of

the YMM register file
branch.sh2 Test branch prediction
cache_banks.sh2 Test for cache bank contentions
cache_latency.sh2 Measure the latency of each cache level
cache_throughput.sh2 Test the throughput of each cache level
daxpy.sh2 Benchmark: standard DAXPY algorithm
decoder_throughput.sh2 Measure throughput of instruction decoder
decode_double.sh2 Test decoder throughput for instructions generating

multiple µops (Needs adjustment for each new processor
type).

decode_nops.sh2 Test instruction fetch and decode rate with different types
of long NOPs

decode_prefix.sh2 Test decoding of instructions with multiple prefixes
exec_domain.sh2 Test extra latency between execution unit domains
fused_branch.sh2 Test if branches can be fused with arithmetic instructions
instruct_boundaries.sh2 Test if instruction boundaries are marked in instruction

cache
jmp.sh2 Test throughput of jump instructions
length_chg_prefix.sh2 Test if decoding is delayed by length-changing prefixes
loop_buffer.sh2 Test loop buffer size
loop_size.sh2 Test loop buffer size and µop cache size
memcpy.sh2 Test which memory copying method is fastest
memory_mirror.sh2 Test fast write-to-read forwarding by mirroring memory

operands inside CPU
mixed_throughput.sh2 Test throughput of a mixture of different instructions
mov_rename.sh2 Test if register moves can be eliminated by renaming
out_of_order.sh2 Measure the depth of out-of-order execution
partial_register_stall.sh2 Test if access to partial registers or partial flags leads to

stalls or extra µops
read_write_bandwidth.sh2 Test the throughput of memory read and write instructions
resource_sharing.sh2 Test which resources are shared between multiple

threads
returnstack.sh2 Measure return stack buffer size
stack_sync_uops.sh2 Test if stack synchronization µops are inserted when

stack pointer is accessed directly
store_forwarding.sh2 Test the efficiency of store-to-load forwarding
subnormal.sh2 Measure penalties for floating point underflow, overflow

and subnormal numbers
taylor.sh2 Benchmark: Taylor series expansion
testmemcpyalign.sh2 Test the efficiency of memory copying with different

alignments
ucache_double_entries.sh2 Test if some instructions take up two entries in µop cache
ucache_misprediction.sh2 Test if branch prediction depends on µop cache

 9

ucache_size.sh2 Measure size of the µop cache
unaligned_mem.sh2 Measure throughput of unaligned memory read/write
warmup_fp.sh2 Test if the floating point unit or full vector unit has a warm

up effect
xor.sh2 Test if XOR, SUB and other instructions are independent

on previous value if both registers are the same

vars.sh Called only by the other scripts. See below
init.sh Initialization of files etc. before running test scripts
init64.sh Same as init.sh. Run in 64 bit mode only
runlist.sh Run a list of tests in a comma-separated file *.csv
allcsv.sh Run all tests defined by *.csv files
allsh1.sh Run all tests defined by .sh1 scripts
allsh2.sh Run all tests defined by .sh2 scripts
alltests.sh Initialize and run all tests
pack_results.sh Pack all test results into a zip file

The results of the *.sh2 scripts will appear in the folder named results2.

Several other files used by the test scripts are listed below.

5.2 Running the test scripts under Windows

It is preferred to run the test scripts under Linux, but most of the test scripts may be able to
run under 64-bit Windows using Cygwin. The Linux driver does not work under WSL
(Windows Subsystem for Linux).

Install the 64-bit version of Cygwin (www.cygwin.com). Install the NASM assembler. Disable
Driver Signature Enforcement as described above on page 2. First run any test as
described above on page 2 in order to install the driver.

Make a subfolder under your Cygwin home, e.g. C:\cygwin64\home\YourName\testp.

Unpack PMCTest.zip and TestScripts.zip to this folder. Run the Cygwin64 terminal as

administrator. In the terminal, go to the folder where you put the test scripts. Run
./init64.sh as described above. If this works, then you may run all the test scripts.

5.3 Interpreting the test results

The listing below is an example of output from the script fvec.sh1 for the MULPS instruction

on an Intel Haswell processor:

Latency: mulps r128,r128

Processor 0

 Clock Core cyc Instruct uops RAT Uops uop p0 Mov elim

 448709 499990 102027 101041 101027 49992 0

 448732 499990 102027 101048 101027 49992 0

 448729 499990 102027 101044 101027 49986 0

 448732 499990 102027 101049 101027 49987 0

 448732 499990 102027 101030 101027 49994 0

Throughput: mulps r128,r128

Processor 0

 Clock Core cyc Instruct Uops uop p0 uop p1 uop p2

 44843 50008 102027 101027 50002 50001 0

 44869 50007 102027 101027 49999 50001 0

 44869 50009 102027 101027 50000 50001 0

 44869 50010 102027 101027 50003 50001 0

http://www.cygwin.com/

 10

 44866 50006 102027 101027 50000 50001 0

Processor 0

 Clock Core cyc Instruct Uops uop p3 uop p4 uop p5

 44892 50012 102027 101027 0 0 0

 44889 50008 102027 101027 0 0 0

 44889 50009 102027 101027 0 0 0

 44892 50010 102027 101027 0 0 0

 44892 50011 102027 101027 0 0 0

Processor 0

 Clock Core cyc Instruct Uops uop p6 uop p7 uops RAT

 44869 50011 102027 101027 1003 0 101046

 44869 50009 102027 101027 1010 0 101065

 44843 50010 102027 101027 1013 0 101067

 44869 50009 102027 101027 1002 0 101040

 44846 50012 102027 101027 999 0 101040

Clock is the clock count measured with the RDTSC instruction. Core cyc is the clock count

measured with the "core clock cycles" counter. The CPU can change its core frequency
dynamically in order to save power. The count on the global clock sometimes changes while
the core clock count is unchanged. We will use the Core clock cycle count as our unit of
measurement in order to get consistent results. AMD and VIA processors do not have a
core clock counter. On these processors we may warm up the CPU by keeping it busy for
some time in order to get the maximum clock frequency. It may be necessary to turn off any
power-saving features in the BIOS setup in order to get consistent clock counts.
The test program is estimating core clock counts on later AMD processors.

The latency measurements are made with a chain of instructions where the output of one
instruction is input for the next, e.g.

MULPS XMM0, XMM1

MULPS XMM1, XMM0

MULPS XMM0, XMM1

MULPS XMM1, XMM0

...

We can see that 100,000 instructions take 500,000 clocks. Thus, the latency for this
instruction is 5 clocks.

The throughput measurements are made with a sequence of instructions where each
instruction does not have to wait for the previous one to finish, e.g.

MULPS XMM1, XMM0

MULPS XMM2, XMM0

MULPS XMM3, XMM0

MULPS XMM4, XMM0

...

Here, 100,000 instructions take 50,000 clocks. Thus, the throughput for this instruction is
two instructions per clock cycle. The reciprocal throughput is 1/2 = 0.5 clock cycles per
instruction.

The throughput test is repeated two or three times with different counters if it is not possible
to have all the counters in one test. Of the 100,000 instructions, we can see that half of
them are going to execution port p0 and half of them to port p1. This means that there are
two execution units that can handle floating point multiplications, and this explains the
throughput of two instructions per clock cycle. The execution units are pipelined so that they
can start a new calculation every clock cycle even though the previous calculations are not
finished yet.

We have a sequence of 100 MULPS instructions inside a loop that repeats 100 or 1000 times

in order to get 10,000 or 100,000 operations. The extra 2000 instructions in the example are

 11

loop overhead. These 2000 instructions end up as 1000 fused branch instructions at port p6
in this example.

5.4 How the scripts work

The test scripts listed in chapter 5 involve the use of the following files:

File name Purpose
PMCTestA.cpp Main C++ file that loads the drivers, sets up the counters, and

prints out the results. Needs to be linked together with one of
the 'B' files.

PMCTest.h

MSRDriver.h

PMCTestWin.h

PMCTestLinux.h

intrin1.h

MSRdrvL.h

C++ header files. Shared between the main test program and
the drivers.

cpugetinfo.cpp Program to get CPU-specific information about CPU brand,
model, cache size, supported instruction sets, etc. Compiled
by init.sh, called by init.sh, vars.sh and by some test

scripts.
shufflelist.cpp

testmemcpy.cpp

testmemcpyalign.cpp

Additional code used by specific test scripts only.

TemplateB32.nasm

TemplateB64.nasm
Assembly language template implementing the test code, 32-
or 64-bit mode. Specific code may be inserted at relevant
points through macros defined in *.inc files.

memcpy64.nasm

testmemcpyal.nasm
Additional code used by specific test scripts only.

vars.sh Called only by the test scripts and by init.sh. Defines the

following CPU-specific variables in a bash script: CPUbrand,

ifamily, imodel, blockports, PMCs, PMClist, BranchPMCs,

LoopPMCs, CachePMCs.
countertypes.inc Produced by init.sh. Assembly code included by

TemplateB??.nasm. Defines default PMC counters for the

specific CPU. Also defines CPU-specific variables: CPUbrand,

ifamily, imodel, USEAVX.
*.inc Assembly language include files with macros to insert into

TemplateB??.nasm. There may be specific *.inc files for

each test script.
cpuinfo.txt List of instruction sets supported by current processor.

Produced by init.sh. May be modified manually if there are
new instruction sets not detected by cpugetinfo.cpp or certain
instruction sets you want to avoid.

results/*.txt Results of list based (*.csv) tests.
results1/info.txt Information about the processor, OS version, compiler

version, etc. Produced by init.sh.
results1/*.txt Results of *.sh1 test scripts.
results2/*.txt Results of *.sh2 test scripts.
a32.o

a64.o
This is PMCTestA.cpp compiled to an object file, 32- and 64-

bit mode. Produced by init.sh.
b32.o

b64.o
This is the assembly language templates and include files
compiled into object files, 32- and 64-bit mode. Recompiled
and overwritten at each test.

c64.o Any additional code needed by specific tests compiled into
object file. Recompiled and overwritten at relevant tests.

 12

x Compiled and linked test program. Recompiled and
overwritten at each test.

The test scripts use three different programming languages. Files with extension .sh, .sh1

and .sh2 use Bash scripting language. Files with extension .cpp use C++ language. Files

with extension .nasm use assembly language in the NASM syntax dialect. (Files with

extension .asm use assembly language in the MASM syntax dialect. They are not used by

the scripted tests).

Each test is made by compiling and linking together two parts, A and B (occasionally three).
The A part is PMCTestA.cpp which loads the drivers, sets up the counters, and prints out the

results. The B part is made from the assembly language template TemplateB32.nasm or

TemplateB64.nasm. It is possible to insert specific initializations, instructions and test code

by the use of macros. Single-line macros may be specified at the NASM command line with
the -D option. Multi-line macros are defined in included files, named *.inc, which are

inserted at the NASM command line with the option -P.

The two parts are compiled, assembled and linked together into an executable test program
with the name x. This executable program outputs the results which are redirected into a

text file. Each test script typically makes and executes many x test programs. Each new x

file overwrites the previous one.

The test scripts may specify which performance monitor counters to use for a specific test.
Some useful lists of performance monitor counters are defined by vars.sh for the specific

CPU that the test is running on:

Counter list Use

PMCs Default counter list. Counts instructions, µops etc.

PMClist List of counter lists to count µops at each execution port. Needs
multiple test runs if there are too many counters to test at once.

BranchPMCs Counts branch mispredictions

LoopPMCs Counts instructions from loop buffer, µop cache and code cache if
relevant for current CPU

CachePMCs Counts cache misses

Some processors have no counters for detecting which execution unit or execution port is
used. Instead it is possible to insert an extra instruction that is known to use a specific
execution port in order to test if that execution port is needed by the instruction under test.
The variable blockports, defined in vars.sh, defines a list of ports to block, one by one.

The extra instructions to insert are defined in the include file lt.inc.

A few of the test scripts are generating extra columns in the output for various calculated
results. The file PMCTestA.cpp defines two optional extra output columns. The column

"Ratio" can contain one of the other counts multiplied by an arbitrary factor, or a ratio of two
of the other counts. The column "Extra out" can contain any value calculated in the B
module after the test. The headings of these columns can be changed in the B module. See
the file strings.inc for an example.

6 How to modify or update the test programs

Each new family of microprocessors has new features that may require new test methods or
other modifications of the test program and the test scripts.

The performance monitor counters for different CPU families are all defined in
CounterDefinitions[] in PMCTestA.cpp. You may add new entries to this table if you need

 13

a counter that is not in this table, and assign a vacant id number to it. The id number is the
reference used in the B module. If a new processor family has different counters from the
previous families then you may add a new family name to EProcFamily in PMCTest.h and a

detection of this processor family in CCounters::GetProcessorFamily() in PMCTestA.cpp.

New processor families often have new instruction sets. Each instruction set is detected by
a certain bit in the output of the CPUID instruction. You can add the specific CPUID bit and

the name for the new instruction set in isets[] in cpugetinfo.cpp. This will enable the test

scripts to detect the availability of this instruction set. Then you can add tests for the new
instructions to one of the existing test scripts or make a new test script for these
instructions. See e.g. new_int_instr.sh1 for examples of how to make tests that are

executed only if a particular instruction set is available.

7 Frequently Asked Questions

7.1 What is this test package for?

I made these test programs as research tools for measuring instruction timings, throughput,
micro-operations, and various bottlenecks in x86 family microprocessors. My results are
published in a series of optimization manuals at www.agner.org/optimize. I am making my
test tools public so that others can reproduce my tests, make further tests, and optimize
small critical pieces of code.

7.2 Can I use this as a benchmark test?

This is not like an ordinary benchmark test. It can give answers to detailed questions like,
what is the latency of floating point multiplication. But it does not measure the overall
performance of big programs where different pieces of code go in and out of the caches all
the time. Cache effects are not detected when testing a small loop that fits into the µop
cache or instruction cache. One advantage of this test program is that it is open source and
you know exactly what it is measuring. Closed source benchmark programs are often
suspected of being biased or measuring the wrong things.

7.3 Can I use this test program as a profiler?

No. These test programs are not suitable for testing a whole program and finding where the
most critical time-consuming parts (hot spots) are. You need a profiler for that. Once you
have identified a hot spot with a profiler, you can isolate this little critical part of the code and
test it with the test program in this package. The test program may help you study details of
how the critical piece of code is performing and how it can be improved.

7.4 Which microprocessors are supported?

All x86 processors from Intel, AMD and VIA.

7.5 Which operating systems are supported?

The test program can run under Windows and Linux, 32- and 64-bit versions. The
automated test scripts currently work best under Linux.

If you are using PMCTest in 64-bit Windows then you have to press F8 during boot and
select "Disable Driver Signature Enforcement". Run the IDE or test program as
administrator.

http://www.agner.org/optimize/

 14

7.6 Why do the scripts run best under Linux?

Windows has a problem with driver signatures as described above on page 2. I am doing
most of my test by remote access. I cannot afford to buy every new microprocessor model
on the market, but friendly technicians and IT journalists have given me remote access to
test their machines. Operating a Windows PC remotely is very troublesome because you
can hardly do anything without a mouse under Windows, and a remotely operated mouse is
moving erratically with unpredictable delays so that you don't know where you are clicking.
In Linux you can do everything from a command line, and no extra equipment is needed for
remote operation. Furthermore, Linux has a powerful scripting language that makes it easier
to automate the tests. It may be possible to run the scripts under Windows by using Cygwin,
but there are various problems as explained above.

7.7 Why are the drivers needed?

Setting up the performance monitor counters requires privileged access in the CPU. This is
only possible from a device driver.

7.8 Which compiler can I use?

Microsoft's C++ compiler comes with MS Visual Studio or MS Windows Driver Kit. Gnu and
Clang C++ compilers come with standard Linux distributions.

7.9 Should I compile for debug or release mode?

If the code you are testing is written in C++ or inline assembly in a C++ file then you should
turn off debug support in your compiler or select release mode in your project IDE and
enable the desired optimization options. The debugging options will interfere with the
measurements and give too high clock counts.

The debugging information does not interfere with pure assembly code. If the code you are
testing is written in an assembly file then you may turn on debugging options. Depending on
which debugger you are using, it may be possible to single-step through the assembly code
and see the register values etc.

7.10 Which assembler can I use?

For .asm files under 32 bit Windows, use ML or JWASM.

For .asm files under 64 bit Windows, use ML64 or JWASM.

For .nasm files under Windows or Linux, use NASM or YASM.

For C++ with inline assembly under 32 bit Windows, use Microsoft or Intel compiler.
For C++ with inline assembly under 64 bit Windows, use Intel C++ compiler.
For C++ with inline assembly in MASM syntax under Linux, use Intel C++ compiler.
For C++ with inline assembly in Intel syntax under Linux, use Gnu or Clang C++ and insert
appropriate syntax directives (.intel_syntax noprefix / .att_syntax prefix)

For C++ with inline assembly in AT&T syntax under Linux, use Gnu C++.

7.11 Should I write the test code in C++ or assembly?

If you have written the test code in C++ then the compiler may optimize away parts of your
code if the result is not used, or it may move invariant parts of your code outside the test
loop. This may give misleading results.

If your purpose is to optimize a piece of C++ code then of course you have to write it in C++.
You may have to make some variables global or volatile in order to prevent the compiler
from making optimizations that interfere with your measurements. You may have to store
the results of your calculations in a global variable or a function return value in order to

 15

prevent the compiler from optimizing away a result that is not used. You may put the test
code in a separate .cpp file and call it from within the test loop.

If you want to test single instructions or very small pieces of code then you will get the most
accurate measurements with assembly.

7.12 How does the time stamp counter work?

The time stamp counter is a 64 bit counter inside the microprocessor chip that is
incremented on every tick of the microprocessor clock. For example, if the microprocessor is
running at 2 GHz then each clock count is 0.5 ns (nanosecond). Measuring clock counts is
much more accurate than measuring milliseconds. If you are testing the same code on two
different microprocessors of the same type but different clock frequencies, then you can
expect to get the same counts if you use the time stamp counter, but not if you measure
milliseconds. Newer Intel processors will count with a resolution equal to the clock multiplier,
which can vary. Use the counter for "core clock cycles" as the reference to get consistent
results.

Some of the test programs use only the lower 32 bits of the 64 bit counter.

The test programs use the serializing instruction CPUID before and after reading the time
stamp counter in order to prevent out-of-order execution to interfere with the measurements.

7.13 How do the performance monitor counters work?

The performance monitor counters are implemented inside the microprocessor chip for test
purposes. They are not used during normal program execution. These counters can be set
up to count various events such as cache misses or branch mispredictions. You need
privileged access to set up the performance monitor counter, but the counters can be read
in non-privileged code when enabled. The performance monitor counters do not interfere
with clock measurements.

The PMCTest programs use a kernel mode driver MSRDriver32.sys or MSRDriver64.sys

under Windows or MSRdrv under Linux to get privileged access to set up the counters. The

driver is loaded the first time the test program starts.

The PMCDOS test program runs entirely in privileged mode. Therefore, it does not need a
special driver. But this test program is obsolete and can only run with old operating systems.

7.14 What do I need the performance monitor counters for?

These counters are useful for counting instructions, micro-operations, cache misses, branch
mispredictions and other events that are useful for testing program performance.

If the critical part of a program has many cache misses then you may improve the
performance by rearranging data so that variables that are used together are also stored
together. If the critical part of a program has many branch mispredictions then you may
improve the performance by limiting the number of branches or making them more
predictable.

7.15 Why are there three versions of the driver?

MSRDriver32.sys is used by PMCTest in 32-bit Windows systems.

MSRDriver64.sys is used by PMCTest in 64-bit Windows systems, even if the test program

runs in 32 bit mode.
MSRdrv is used by PMCTest in Linux systems, both 32 and 64 bit.

 16

7.16 If the drivers do not work

Under Windows:
Make sure the driver files MSRDriver32.sys and MSRDriver64.sys are in the path. The 64

bit driver MSRDriver64.sys is needed under 64-bit Windows, even if running in 32-bit

mode.
If running under 64-bit Windows: Press F8 during system boot and select "Disable Driver
Signature Enforcement". Run as administrator.
Ignore the popup message "Windows requires a digitally signed driver".
Try to run the stand-alone test program with another compiler before running the test scripts
that require the Cygwin or Mingw compiler.

Under Linux:
Make sure you have installed the driver as described in chapter 3.1. You have to reinstall
the driver every time the computer has been restarted, using:

sudo ./install.sh

7.17 Error compiling .cpp file

Make sure the character set is ASCII, not Unicode. In Visual C++ set:
Project → Properties → General → Character set → Not Set.

Make sure you compile for console mode, unmanaged code.
Do not enable precompiled headers. Comment out #include <intrin.h> in the .cpp files if

the compiler does not support intrinsic functions.

7.18 I get the error message: "Cannot open intrin.h"

Comment out the line #define USE_INTRINSICS in the .cpp files to disable the use of intrinsic

functions. The program will use inline assembly instead. Alternatively, use the included
intrin1.h file for Microsoft compilers.

7.19 I get the error message: No matching counter definition found

The counter definitions are CPU-specific. Change the counter types under
CounterTypesDesired in the B module. The available counter types are defined in

PMCTestA.cpp. You may have a newer CPU that is not supported by the test program.

7.20 How can I define new performance monitor counter events?

You may add new event specifications for the appropriate microprocessor family in the
CounterDefinitions[] table at the bottom of PMCTestA.cpp.

See IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide and AMD BIOS and Kernel Developer's Guide for specification of the available PMC
events. The PMC events for VIA processors are currently undocumented.

7.21 Why is the first clock count higher than the rest?

Because the code and data are unlikely to be cached at the first test run, and branches are
more likely to be mispredicted. The first count represents the time it takes to execute the
test code when code and data are not in the level-1 cache. The subsequent counts
represent the time it takes when everything is in the level-1 cache.

 17

Some of the later counts may occasionally be higher in the event of interrupts occurring
during the test or reorganization of a trace cache.

Instructions on vector registers larger than 128 bits may run slower on some Intel
processors during a warm-up period while the upper part of the execution unit is powered
up.

7.22 How accurate are the counts?

The clock counts for pure assembly code are usually accurate to +/- 4 clocks. If you want to
measure a single instruction accurately, then repeat the instruction many times. Example
(MASM syntax):

REPT 100

 SHR EAX, 5

ENDM

This will produce a hundred SHR EAX,5 instructions. If the measured clock count for 100

instructions is 396 then you know that the SHR instruction takes exactly 4 clock cycles. The

resolution of the clock counter is equal to the clock multiplier in newer Intel processors. For
example, if the clock multiplier is 11 then all clock counts will be divisible by 11. It is more
accurate to use the counter for "Core clock cycles" rather than the time stamp counter as
reference on Intel processors.

If you want higher counts without exceeding the code cache size then include the above
code in a loop, for example:

MOV ECX, 10000

ALIGN 16

L:

 REPT 100

 SHR EAX, 5

 ENDM

 DEC ECX

 JNZ L

7.23 Why do I get negative counts?

The test programs make a reference measurement without the test code and then a similar
measurement with the test code. The reference count is then subtracted from the test count.
The reference count may be higher than the test count because of random fluctuations, and
this will give a negative result.

7.24 Where can I get the compilers?

Microsoft Visual Studio can be bought from software dealers. You may use the free express
edition of visual studio.

Microsoft 32 bit C++ compiler may be included with Microsoft Windows Driver Kit (WDK) or
Driver Development Kit (DDK) which you can download from www.microsoft.com.

Intel C++ compiler 32/64 bit for Windows or Linux can be bought or obtained as a time
limited trial version from www.intel.com.

Gnu C++ compiler can be installed in Linux by using normal installation procedures. It can
be installed in Windows as part of the Mingw or Cygwin package.

 18

Clang C++ compiler can be installed in Linux by using normal installation procedures. It can
be installed in Windows as an add-on to Visual Studio.

7.25 Where can I get the assemblers?

The Microsoft assemblers are included in some versions of Microsoft Visual Studio or
Microsoft Windows Driver Kit or Microsoft Driver Development Kit.

The NASM, YASM and JWASM assemblers are freeware and support several different
operating systems. The NASM assembler is recommended.

The Microsoft Macro Assembler reference manual is found at msdn.microsoft.com.

7.26 Can I run multiple threads?

Yes. The PMCTest.zip package allows multi-threaded testing. The results are less reliable

than single-threaded tests. Set the define NUM_THREADS in the B module to the desired

number of threads. All threads will run the same code simultaneously. It is useful to set the
number of threads to 3. If the CPU can run two threads in each core then the test program
will put two of the three threads in the same core and one in a separate core. If the threads
running together are contending for a limited resource then they will run slower than the
thread running alone. You will also get delays if multiple threads are writing to the same
cache line.

7.27 How can the latency of memory read and write instructions be measured?

It can't be measured without some kind of physical probe at the memory chips. We can
measure the latency of a memory write followed by a read from the same address. A
modern CPU will use store forwarding where possible, so that we are actually measuring
the latency of store forwarding rather than the latency of cache access. You may define the
read latency as the latency of pointer chasing, i.e. walking through a linked list of pointers to
pointers (repeated MOV RAX,[RAX]). The apparent write latency can then be defined as the

store forwarding latency minus the pointer chasing latency. While these values are fictive,
they are useful for calculating the total latency of a long dependency chain.

7.28 How can the latency be measured of an instruction that uses different
types of registers for input and output?

This is usually impossible. You cannot measure the latency of an instruction that has one
type of registers as input and another type of registers as output, e.g. MOVD EAX,XMM0,

because you cannot make a dependency chain with this instruction only. It is only possible
to measure the combined latency of such an instruction and another instruction that
converts the other way, e.g. MOVD EAX,XMM0 / MOVD XMM0,EAX. The combined latency can

then be divided arbitrarily between the two instructions. Sometimes you may make a
sensible choice about how much of the total latency to assign to each of these two
instructions, based on the number of micro-operations used by each instruction, by making
a three-way chain with a memory intermediate, or by using technical documentation from
the CPU vendor. However, if something is impossible to measure then it is also irrelevant for
calculating the performance of a piece of software. Only the combined latency is relevant.

8 License
These test programs are published under the Gnu General Public License version 3. See
www.gnu.org/licenses/#GPL.

http://www.gnu.org/licenses/#GPL

	1 Introduction
	2 Instructions for running PMCTest under Windows:
	3 Instructions for running PMCTest under Linux:
	3.1 Necessary installations
	3.2 Inserting the code to test

	4 Testing inside another program
	5 Test scripts
	5.1 Running the test scripts under Linux
	List based tests
	Script files for testing the latencies and throughputs
	Script files for other purposes
	Lists of test scripts

	5.2 Running the test scripts under Windows
	5.3 Interpreting the test results
	5.4 How the scripts work

	6 How to modify or update the test programs
	7 Frequently Asked Questions
	7.1 What is this test package for?
	7.2 Can I use this as a benchmark test?
	7.3 Can I use this test program as a profiler?
	7.4 Which microprocessors are supported?
	7.5 Which operating systems are supported?
	7.6 Why do the scripts run best under Linux?
	7.7 Why are the drivers needed?
	7.8 Which compiler can I use?
	7.9 Should I compile for debug or release mode?
	7.10 Which assembler can I use?
	7.11 Should I write the test code in C++ or assembly?
	7.12 How does the time stamp counter work?
	7.13 How do the performance monitor counters work?
	7.14 What do I need the performance monitor counters for?
	7.15 Why are there three versions of the driver?
	7.16 If the drivers do not work
	7.17 Error compiling .cpp file
	7.18 I get the error message: "Cannot open intrin.h"
	7.19 I get the error message: No matching counter definition found
	7.20 How can I define new performance monitor counter events?
	7.21 Why is the first clock count higher than the rest?
	7.22 How accurate are the counts?
	7.23 Why do I get negative counts?
	7.24 Where can I get the compilers?
	7.25 Where can I get the assemblers?
	7.26 Can I run multiple threads?
	7.27 How can the latency of memory read and write instructions be measured?
	7.28 How can the latency be measured of an instruction that uses different types of registers for input and output?

	8 License

