
VCL
C++ vector class library

manual
Agner Fog

© 2022-08-07. Apache license 2.0

Contents

1 Introduction 3
1.1 How it works . 4
1.2 Features of VCL . 4
1.3 Instruction sets supported . 4
1.4 Platforms supported . 5
1.5 Compilers supported . 5
1.6 Intended use . 5
1.7 How VCL uses metaprogramming . 5
1.8 Availability . 6
1.9 Support . 6
1.10 License . 6

2 The basics 7
2.1 How to compile . 7
2.2 Overview of vector classes . 8
2.3 Half precision floating point vectors . 9

Compiler support . 10
Half precision vector classes . 11
Functions and operators . 11

2.4 Constructing vectors and loading data into vectors . 12
2.5 Getting data from vectors . 14
2.6 Arrays and vectors . 16
2.7 Using a namespace . 17

3 Operators 18
3.1 Arithmetic operators . 18
3.2 Logic operators . 19
3.3 Integer division . 22

4 Functions 24
4.1 Integer functions . 24
4.2 Floating point simple functions . 26

5 Boolean operations and per-element branches 31
5.1 Internal representation of boolean vectors . 32
5.2 Functions for use with booleans . 33

6 Conversion between vector types 35
6.1 Conversion between data vector types . 35
6.2 Conversion between boolean vector types . 42

1

7 Permute, blend, lookup, gather and scatter functions 44
7.1 Permute functions . 44
7.2 Blend functions . 45
7.3 Lookup functions . 46
7.4 Gather functions . 49
7.5 Scatter functions . 50

8 Mathematical functions 52
8.1 Floating point categorization functions . 53
8.2 Floating point control word manipulation functions . 55
8.3 Standard mathematical functions . 57
8.4 Inline mathematical functions . 58
8.5 Using an external library for mathematical functions . 58
8.6 Powers, exponential functions and logarithms . 59
8.7 Trigonometric functions and inverse trigonometric functions 62
8.8 Hyperbolic functions and inverse hyperbolic functions 65
8.9 Other mathematical functions . 66

9 Performance considerations 68
9.1 Comparison of alternative methods for writing SIMD code 68
9.2 Choice of compiler and function libraries . 69
9.3 Choosing the optimal vector size and precision . 70
9.4 Putting data into vectors . 71
9.5 Alignment of arrays and vectors . 73
9.6 When the data size is not a multiple of the vector size 75
9.7 Using multiple accumulators . 78
9.8 Using multiple threads . 79
9.9 Instruction sets and CPU dispatching . 80
9.10 Function calling convention . 83

10 Examples 84

11 Add-on packages 87

12 Technical details 88
12.1 Error conditions . 88

Runtime errors . 88
Floating point errors . 88
Compile-time errors . 89
Link errors . 89
Implementation-dependent behavior . 89

12.2 Floating point behavior details . 90
12.3 Making add-on packages . 91
12.4 Contributing to VCL . 93
12.5 Test bench . 93
12.6 File list . 93

2

Chapter 1

Introduction

The VCL vector class library is a tool that helps C++ programmers make their code much faster by
handling multiple data in parallel. Modern CPU’s have Single Instruction Multiple Data (SIMD)
instructions for handling vectors of multiple data elements in parallel. The compiler may be able to
use SIMD instructions automatically in simple cases, but a human programmer is often able to do it
better by organizing data into vectors that fit the SIMD instructions. The VCL library is a tool that
makes it easier for the programmer to write vector code without having to use assembly language or
intrinsic functions. Let us explain this with an example:

Example 1.1.

// Array loop
f l o a t a [8] , b [8] , c [8] ; // de c l a r e ar rays
. . . // put va lue s in to ar rays
f o r (i n t i = 0 ; i < 8 ; i++) { // loop f o r 8 e lements

c [i] = a [i] + b [i] * 1 . 5 f ; // ope ra t i on s on each element
}

The vector class library allows you to rewrite example 1.1 using vectors:

Example 1.2.

// Array loop us ing ve c t o r s
#inc lude ” v e c t o r c l a s s . h” // use vec to r c l a s s l i b r a r y
f l o a t a [8] , b [8] , c [8] ; // de c l a r e ar rays
. . . // put va lue s in to ar rays
Vec8f avec , bvec , cvec ; // d e f i n e ve c t o r s o f 8 f l o a t s each
avec . load (a) ; // load array a in to vec to r
bvec . load (b) ; // load array b in to vec to r
cvec = avec + bvec * 1 .5 f ; // do ope ra t i on s on ve c t o r s
cvec . s t o r e (c) ; // save r e s u l t in array c

Example 1.2 does the same as example 1.1, but more efficiently because it utilizes SIMD instructions
that do eight additions and/or eight multiplications in a single instruction. Modern microprocessors
have these instructions which may give you a throughput of eight floating point additions and eight
multiplications per clock cycle. A good optimizing compiler may actually convert example 1.1
automatically to use the SIMD instructions, but in more complicated cases you cannot be sure that
the compiler is able to vectorize your code in an optimal way.

3

1.1 How it works
The type Vec8f in example 1.2 is a class that encapsulates the intrinsic type __m256 which
represents a 256-bit vector register holding 8 floating point numbers of 32 bits each. The overloaded
operators + and * represent the SIMD instructions for adding and multiplying vectors. These
operators are inlined so that no extra code is generated other than the SIMD instructions. All you
have to do to get access to these vector operations is to include ”vectorclass.h” in your C++ code
and specify the desired instruction set (e.g. SSE2, AVX2, or AVX512) in the compiler options.

The code in example 1.2 can be reduced to just 4 machine instructions if the instruction set AVX or
higher is enabled. The SSE2 instruction set will give 8 machine instructions because the maximum
vector register size is only half as big for instruction sets prior to AVX. The code in example 1.1 will
generate approximately 44 instructions if the compiler does not automatically vectorize the code.

1.2 Features of VCL
• Vectors of 8-, 16-, 32- and 64-bit integers, signed and unsigned

• Vectors of half precision, single precision, and double precision floating point numbers

• Total vector size 128, 256, or 512 bits

• Defines almost all common operators

• Boolean operations and branches on vector elements

• Many arithmetic functions

• Standard mathematical functions

• Permute, blend, gather, scatter, and table look-up functions

• Fast integer division

• Can build code for different instruction sets from the same source code

• CPU dispatching to utilize higher instruction sets when available

• Uses metaprogramming to find the optimal implementation for the selected instruction set and
parameter values of a given operator or function

• Includes extra add-on packages for special purposes and applications

1.3 Instruction sets supported
Since 1997, every new CPU model has extended the x86 instruction set with more SIMD instructions.
The VCL library requires the SSE2 instruction set as a minimum, and supports SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AVX2, XOP, FMA3, FMA4, and AVX512F/VL/BW/DQ, as well as the new
AVX512VBMI/VBMI2 and AVX512-FP16.

4

1.4 Platforms supported
Windows, Linux, and Mac, 32-bit and 64-bit, with Intel, AMD, or VIA x86 or x86-64 instruction set
processor. There are no plans to support ARM or other instruction sets.

A special version of the vector class library for the (now obsolete) Intel Knights Corner coprocessor
has been developed at CERN. It is available from https://bitbucket.org/veclibknc/vclknc.git or
https://bitbucket.org/edanor/umesimd/

1.5 Compilers supported
The vector class library could not have been made with any other programming language than C++,
because only C++ combines all the necessary features: low-level programming such as bit
manipulation and intrinsic functions, high-level programming features such as classes and templates,
operator overloading, metaprogramming, compiling to machine code without any intermediate byte
code, and highly optimizing compilers with support for the many different instruction sets and
platforms.

The vector class library works with Gnu, Clang, Microsoft, and Intel C++ compilers. It is
recommended to use the newest version of the compiler if the newest instruction sets are used. The
best optimization is obtained with the Gnu and Clang compilers.

The vector class library version 2.xx requires the C++17 or later standard for the C++ language.
The vector class library version 1.xx, using standard C++0x, should only be used if it is not possible
to use a compiler with C++17 support.

1.6 Intended use
This vector class library is intended for experienced C++ programmers. It is useful for improving code
performance where speed is critical and where the compiler is unable to vectorize the code
automatically in an optimal way. Combining explicit vectorization by the programmer with other kinds
of optimization done by the compiler, it has the potential for generating highly efficient code. This
can be useful for optimizing library functions and critical innermost loops (hotspots) in CPU-intensive
programs. There is no reason to use it in less critical parts of a program.

1.7 How VCL uses metaprogramming
The vector class library uses metaprogramming extensively to resolve as much work as possible at
compile time rather than at run time. Especially, it uses metaprogramming to find the optimal
instructions and algorithms, depending on constants in the code and the selected instruction set.

VCL version 1.xx is written for older versions of the C++ language that does not have very good
metaprogramming features, but the VCL makes the best use of the available features such as
preprocessing directives and templates. Furthermore, it relies extensively on optimizing compilers for
doing calculations with constant inputs at compile time and for removing not-taken branches.

VCL version 2.xx is taking advantage of constexpr branches, constexpr functions, and other
advanced features in C++14 and C++17 for explicitly telling the compiler what calculations to do at
compile time, and to remove not-taken branches. This makes the code clearer and more efficient. It is
recommended to use the latest version of VCL, if possible.

The following cases illustrate the use of metaprogramming in VCL:

5

• Compiling for different instruction sets. If you are using a bigger vector size than supported by
the instruction set, then the VCL code will split the big vector into multiple smaller vectors. If
you compile the same code again for a higher instruction set, then you will get a more efficient
program with full-size vector registers.

• Permute, blend, and gather functions. There are many different machine instructions that move
data between different vector elements. Some of these instructions can only do very specific
data permutations. The VCL uses quite a lot of metaprogramming to find the instruction or
sequence of instructions that best fits the specified permutation pattern. Often, the higher
instruction sets give more efficient results.

• Integer division. Integer division can be done faster by a combination of multiplication and
bit-shifting. The VCL can use metaprogramming to find the optimal division method and
calculate the multiplication factor and shift count at compile time if the divisor is a known
constant. See page 5 for details.

• Raising to a power. Calculating x8 can be done faster by squaring x three times rather than by
a loop that multiplies seven times. The VCL can determine the optimal way of raising floating
point vectors to an integer or rational power in the functions pow_const and pow_rational.

1.8 Availability
The newest version of the vector class library is available from github.com/vectorclass

1.9 Support
The vector class library is not a commercial product, but free and open source. You cannot expect
the kind of support you would get with a paid product.

A discussion board for software developed by Agner Fog is currently provided at
www.agner.org/forum/viewforum.php?f=1. This is intended for general discussion and suggestions,
but not for programming support.

Programming questions should preferably be asked at Stackoverflow.com using the tag
vector-class-library.

1.10 License
The Vector class library is licensed under the Apache License, version 2.0.

You may not use the files except in compliance with this License. You may obtain a copy of the
license at www.apache.org/licenses/LICENSE-2.0

I have previously sold commercial licenses to VCL. Now, I have decided for a more permissive license.
Instead of selling commercial licenses, I am now suggesting that commercial users make a donation to
an open source project of your own choosing or to an organization promoting open source software.

6

https://github.com/vectorclass
https://www.agner.org/forum/viewforum.php?f=1
https://stackoverflow.com
https://www.apache.org/licenses/LICENSE-2.0

Chapter 2

The basics

2.1 How to compile
Copy the latest version of the header files (*.h) to the same folder as your C++ source files. The
header files from any add-on package should be included too if needed. Alternatively, you may put
the VCL header files in a separate folder and specify an include path to this folder.

Include the header file vectorclass.h in your C++ source file. Several other header files will be
included automatically.

Set your compiler options to the desired instruction set. The instruction set must be at least SSE2.
See table 9.2 on page 81 for a list of compiler options. It is recommended to compile for 64-bit mode.
You may compile multiple versions for different instruction sets as explained in chapter 9.9.

The following simple C++ example may help you get started:

Example 2.1.

// Simple vec to r c l a s s example C++ f i l e
#inc lude <s td i o . h>
#inc lude ” v e c t o r c l a s s . h”

i n t main () {
// d e f i n e and i n i t i a l i z e i n t e g e r v e c t o r s a and b
Vec4i a (10 ,11 ,12 ,13) ;
Vec4i b (20 ,21 ,22 ,23) ;

// add the two vec to r s
Vec4i c = a + b ;

// Pr int the r e s u l t s
f o r (i n t i = 0 ; i < c . s i z e () ; i++) {

p r i n t f (” %5i ” , c [i]) ;
}
p r i n t f (”\n”) ;

r e turn 0 ;
}

7

2.2 Overview of vector classes
The vector class library supports vectors of 8-bit, 16-bit, 32-bit and 64-bit signed and unsigned
integers, 32-bit single precision floating point numbers, and 64-bit double precision floating point
numbers. See page 9 for optional support for 16-bit half precision floating point numbers.

A vector contains multiple elements of the same type to a total size of 128, 256 or 512 bits. The
vector elements are indexed, starting at 0 for the first element.

The constant MAX_VECTOR_SIZE indicates the maximum vector size. The default maximum
vector size is 512 in the current version and possibly larger in future versions. You can disable 512-bit
vectors by defining

#de f i n e MAX_VECTOR_SIZE 256

before including the vector class header files.

The vector class library also defines boolean vectors. These are mainly used for conditionally selecting
elements from vectors.

The following vector classes are defined:

Table 2.1: Integer vector classes
Vector
class

Integer
size bits

Signed Elements
per vector

Total bits Minimum
recommended
instruction set

Vec16c 8 signed 16 128 SSE2
Vec16uc 8 unsigned 16 128 SSE2
Vec8s 16 signed 8 128 SSE2
Vec8us 16 unsigned 8 128 SSE2
Vec4i 32 signed 4 128 SSE2
Vec4ui 32 unsigned 4 128 SSE2
Vec2q 64 signed 2 128 SSE2
Vec2uq 64 unsigned 2 128 SSE2
Vec32c 8 signed 32 256 AVX2
Vec32uc 8 unsigned 32 256 AVX2
Vec16s 16 signed 16 256 AVX2
Vec16us 16 unsigned 16 256 AVX2
Vec8i 32 signed 8 256 AVX2
Vec8ui 32 unsigned 8 256 AVX2
Vec4q 64 signed 4 256 AVX2
Vec4uq 64 unsigned 4 256 AVX2
Vec64c 8 signed 64 512 AVX512BW
Vec64uc 8 unsigned 64 512 AVX512BW
Vec32s 16 signed 32 512 AVX512BW
Vec32us 16 unsigned 32 512 AVX512BW
Vec16i 32 signed 16 512 AVX512
Vec16ui 32 unsigned 16 512 AVX512
Vec8q 64 signed 8 512 AVX512
Vec8uq 64 unsigned 8 512 AVX512

8

Table 2.2: Floating point vector classes
Vector
class

Precision Elements
per vector

Total bits Minimum
recommended
instruction set

Vec4f single 4 128 SSE2
Vec2d double 2 128 SSE2
Vec8f single 8 256 AVX
Vec4d double 4 256 AVX
Vec16f single 16 512 AVX512
Vec8d double 8 512 AVX512

Table 2.3: Boolean vector classes
Boolean
vector
class

For use with Elements
per vector

Total
size, bits

Minimum
recommended
instruction set

Vec16cb Vec16c, Vec16uc 16 16 or 128 SSE2
Vec8sb Vec8s, Vec8us 8 8 or 128 SSE2
Vec4ib Vec4i, Vec4ui 4 8 or 128 SSE2
Vec2qb Vec2q, Vec2uq 2 8 or 128 SSE2
Vec32cb Vec32c, Vec32uc 32 32 or 256 AVX2
Vec16sb Vec16s, Vec16us 16 16 or 256 AVX2
Vec8ib Vec8i, Vec8ui 8 8 or 256 AVX2
Vec4qb Vec4q, Vec4uq 4 8 or 256 AVX2
Vec64cb Vec64c, Vec64uc 64 64 or 512 AVX512BW
Vec32sb Vec32s, Vec32us 32 32 or 512 AVX512BW
Vec16ib Vec16i, Vec16ui 16 16 or 512 AVX512
Vec8qb Vec8q, Vec8uq 8 8 or 512 AVX512
Vec4fb Vec4f 4 8 or 128 SSE2
Vec2db Vec2d 2 8 or 128 SSE2
Vec8fb Vec8f 8 8 or 256 SSE2
Vec4db Vec4d 4 8 or 256 SSE2
Vec16fb Vec16f 16 16 AVX512
Vec8db Vec8d 8 8 AVX512

The size of the boolean vectors depends on the instruction set (see page 32).

2.3 Half precision floating point vectors
Half precision floating point numbers are represented by 16 bits (one sign bit, five exponent bits, and
ten bits for the mantissa). Half precision is useful for sound, video, and artificial intelligence
applications where the low precision is acceptable. A 512-bit vector register can contain 32
half-precision numbers and do 32 arithmetic operations simultaneously with a single instruction.

Microprocessors have various levels of support for half precision. The F16C instruction set extension
supports conversion between half precision and single precision, but not arithmetic operations on half
precision numbers. F16C has been included in Intel and AMD processors since 2013-2014. The newer
AVX512-FP16 instruction set extension implements a full set of arithmetic operations on half
precision numbers. The AVX512-FP16 instruction set will be supported by Intel’s Sapphire Rapids
processor, expected to be introduced in late 2022.

9

The Vector Class Library supports half precision floating point vectors when the following header file
is included:

#inc lude ” vec to r fp16 . h”

The performance of half-precision vector calculations is highly dependent on the instruction set. Full
performance is obtained only when the AVX512-FP16 instruction set is supported by the
microprocessor and enabled in the compiler options.

The earlier F16C instruction set allows efficient conversion between single precision and half precision,
but not arithmetic operations on half precision vectors. With F16C, arithmetic operations are
emulated by converting the operands from half precision to single precision and converting each result
back to half precision. This will be inefficient because intermediate results are converted back and
forth, as illustrated in this example:

#inc lude ” vec to r fp16 . h”
Vec8h a , b , c , d ; // ve c t o r s o f e i gh t h a l f p r e c i s i o n numbers
d = a + b + c ; // c a l c u l a t e sums

If this example is compiled with F16C, but not AVX512-FP16, then the code will convert a and b
from half precision to single precision, calculate a+b with single precision, convert a+b back to half
precision, then convert a+b to single precision again, convert c to single precision, do the next
addition with single precision, and convert the final sum a+b+c back to half precision. This is of
course not efficient. It is more efficient to do all the intermediate calculations with single precision:

#inc lude ” vec to r fp16 . h”
Vec8h a , b , c , d ; // h a l f p r e c i s i o n ve c t o r s
Vec8f aa = to_f l oa t (a) ; // convert to s i n g l e p r e c i s i o n
Vec8f bb = to_f l oa t (b) ;
Vec8f cc = to_f l oa t (c) ;
Vec8f dd = aa + bb + cc ; // do the c a l c u l a t i o n s
d = to_f loat16 (dd) ; // convert the r e s u l t to h a l f p r e c i s i o n

The ability to emulate half precision calculations as illustrated in the first example is useful for
verifying half-precision code. This allows you to test whether half precision is sufficient for a particular
task even when you do not have access to a computer with AVX512-FP16. If the goal is to get
maximum performance then you should use half precision only on microprocessors with
AVX512-FP16, but use single precision on microprocessors without AVX512-FP16.

The half precision code can run even on microprocessors without F16C, but this will be extremely
slow because every conversion between single and half precision requires a long sequence of
instructions. Therefore, it is important to enable F16C in the compiler when it is present. F16C is
supported by some AMD and Intel processors that have AVX and all currently known processors that
have AVX2 and later instruction sets. It may be useful to make a version of the code that uses
conversion between single and half precision for processors that have both AVX2 and F16C, and a
more efficient version that does calculations with half precision for processors that have
AVX512-FP16. The functions hasF16C() and hasAVX512FP16() in instrset_detect.cpp can be used
for detecting microprocessor support for these instruction sets.

Compiler support

The AVX512-FP16 instruction set is supported by the following compilers and later versions:
g++ version 12.1.0 with binutils 2.38

10

clang++ version 14.0.0
Intel c++ compiler version 2021.2

The proper type for half precision scalars is _Float16. This type is supported by the g++ and some
Intel compilers. It is supported on the Clang compiler only when AVX512-FP16 is enabled. The vector
class library will emulate a type named Float16 if _Float16 is not supported by the compiler. This
emulation includes only the most basic operations and operators on half precision floating point
scalars, such as +− ∗/ and conversion to and from float. Other operators and functions on Float16
are not emulated. Float16 is defined as _Float16 whenever _Float16 is supported by the compiler.

Do not use the types __fp16 and __bf16 that are available on some compilers. __fp16 is an
interchange format, not an arithmetic format. This means that variables of type __fp16 will be
immediately converted to float before any operation. __bf16 is an incompatible format available on
some systems. __bf16 has 8 exponent bits and 7 mantissa bits where _Float16 and __fp16 have 5
exponent bits and 10 mantissa bits.

Half precision vector classes

Table 2.4: Half precision floating point vector classes
Vector
class

Precision Elements
per vector

Total bits Minimum
recommended
instruction set

Vec8h half 8 128 AVX512-FP16
Vec16h half 16 256 AVX512-FP16
Vec32h half 32 512 AVX512-FP16

The corresponding boolean vector classes are Vec8hb, Vec16hb, and Vec32hb.

Subnormal numbers are supported for these vector classes regardless of the floating point control
word. The floating point control word (see page 55) has no effect on half precision subnormal
numbers.

Functions and operators

The half precision vectors can be used with the same operators and general functions as single and
double precision vectors. Some mathematical functions are supported for half precision, including
exponential and trigonometric functions.

Complex number algebra and functions with half precision are supported. See
complexvec_manual.pdf at github.

The following functions are available for conversion between single precision and half precision:

Table 2.5: Conversion between single and half precision
Function Conversion Comment
convert8h_4f Vec8h -> Vec4f only lower half is converted
to_float Vec8h -> Vec8f
to_float Vec16h -> Vec16f
convert4f_8h Vec4f -> Vec8h upper half is zero
to_float16 Vec8f -> Vec8h
to_float16 Vec16f -> Vec16h

11

https://github.com/vectorclass/add-on/tree/master/complex

Vec32h cannot be converted directly to and from single precision because there is no Vec32f.
Conversion to and from Vec32h can be coded as follows:

#inc lude ” vec to r fp16 . h”
Vec16f a , b ; // s i n g l e p r e c i s i o n ve c t o r s
Vec32h h ; // ha l f p r e c i s i o n vec to r
// conver s i on from s i n g l e to h a l f p r e c i s i o n :
h = Vec32h (to_f loat16 (a) , to_f loat16 (b)) ;
// conver s i on from ha l f to s i n g l e p r e c i s i o n :
a = to_f l oa t (h . get_low ()) ; // lower h a l f
b = to_f l oa t (h . get_high ()) ; // upper h a l f

2.4 Constructing vectors and loading data into vectors
There are many ways to create vectors and put data into vectors. These methods are listed here.

Method default constructor
Defined for all vector classes
Description the vector is created but not initialized. The value is unpre-

dictable
Efficiency good

// Example :
Vec4i a ; // c r e a t e s a vec to r o f 4 s igned i n t e g e r s

Method constructor with one parameter
Defined for all vector classes
Description all elements get the same value
Efficiency good

// Example :
Vec4i a (5) ; // a l l f our e lements = 5

Method assignment to scalar
Defined for all vector classes
Description all elements get the same value
Efficiency good

// Example :
Vec4i a = 6 ; // a l l f our e lements = 6

Method constructor with one parameter for each vector element
Defined for all integer and floating point vector classes
Description each element gets a specified value. The parameter for ele-

ment number 0 comes first.
Efficiency good for constant. Medium for variables as parameters

// Examples :
Vec4i a (10 ,11 ,12 ,13) ; // a = (10 ,11 ,12 ,13)
Vec4i b = Vec4i (20 ,21 ,22 ,23) ; // b = (20 ,21 ,22 ,23)

12

Method constructor with one parameter for each half vector
Defined for all vector classes if a similar class of half the size exists
Description Concatenates two 128-bit vectors into one 256-bit vector.

Concatenates two 256-bit vectors into one 512-bit vector
Efficiency good

// Example :
Vec4i a (10 ,11 ,12 ,13) ;
Vec4i b (20 ,21 ,22 ,23) ;
Vec8i c (a , b) ; // c = (10 ,11 ,12 ,13 ,20 ,21 ,22 ,23)

Method insert(index, value)
Defined for all vector classes
Description changes the value of element number (index) to (value). The

index starts at 0
Efficiency good if AVX512VL, medium otherwise

// Example :
Vec4i a (0) ;
a . i n s e r t (2 , 9) ; // a = (0 , 0 , 9 , 0)

Method load(const pointer)
Defined for all integer and floating point vector classes
Description loads all elements from an array
Efficiency good, except immediately after inserting elements one by one

into the array

// Example :
i n t l i s t [8] = {10 ,11 ,12 ,13 ,14 ,15 ,16 ,17} ;
Vec4i a , b ;
a . load (l i s t) ; // a = (10 ,11 ,12 ,13)
b . load (l i s t +4) ; // b = (14 ,15 ,16 ,17)

Method load_a(const pointer)
Defined for all integer and floating point vector classes
Description loads all elements from an aligned array
Efficiency good, except immediately after inserting elements separately

into the array.
This method does the same as the load method (see above), but requires that the pointer points to
an address divisible by 16 for 128-bit vectors, by 32 for 256-bit vectors, or by 64 for 512 bit vectors. If
you are not certain that the array is properly aligned then use load instead of load_a. There is hardly
any difference in efficiency between load and load_a on newer microprocessors.

Method load_partial(int n, const pointer)
Defined for all integer and floating point vector classes
Description loads n elements from an array into a vector. Sets remaining

elements to 0. 0 ≤ n ≤ (vector size).
Efficiency good if AVX512VL, medium otherwise

// Example :
f l o a t l i s t [3] = {1 .0 f , 1 . 1 f , 1 . 2 f } ;
Vec4f a ;
a . l oad_par t i a l (2 , l i s t) ; // a = (1 . 0 , 1 . 1 , 0 . 0 , 0 . 0)

13

Method cutoff(int n)
Defined for all integer and floating point vector classes
Description leaves the first n elements unchanged and sets the remaining

elements to zero. 0 ≤ n ≤ (vector size).
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
a . c u t o f f (2) ; // a = (10 , 11 , 0 , 0)

Method gather<indexes>(array)
Defined for floating point vector classes and integer vector classes with

32-bit and 64-bit elements
Description gather non-contiguous data from an array.
Efficiency medium

// Example :
i n t l i s t [8] = {10 ,11 ,12 ,13 ,14 ,15 ,16 ,17} ;
Vec4i a = gather4 i <0 ,2 ,1 ,6>(l i s t) ; // a = (10 ,12 ,11 ,16)

2.5 Getting data from vectors
There are many ways to extract elements or parts of a vector. These methods are listed here.

Method store(pointer)
Defined for all integer and floating point vector classes
Description stores all elements into an array
Efficiency good

// Example :
Vec4i a (10 ,11 ,12 ,13) ;
Vec4i b (20 ,21 ,22 ,23) ;
i n t l i s t [8] ;
a . s t o r e (l i s t) ;
b . s t o r e (l i s t +4) ; // l i s t conta in s (10 ,11 ,12 ,13 ,20 ,21 ,22 ,23)

Method store_a(pointer)
Defined for all integer and floating point vector classes
Description stores all elements into an aligned array
Efficiency good

This method does the same as the store method (see above), but requires that the pointer points to
an address divisible by 16 for 128-bit vectors, by 32 for 256-bit vectors, or by 64 for 512-bit vectors. If
you are not certain that the array is properly aligned then use store instead of store_a. There is
hardly any difference in efficiency between store and store_a on newer microprocessors.

Method store_nt(pointer)
Defined for all integer and floating point vector classes
Description stores all elements into an aligned array without caching
Efficiency recommended only for very large arrays

This method does the same as the store_a method (see above), but without using the cache. This is
optimal only for very large arrays when it is unlikely that the data will stay cached until they are read

14

again. As a rule of thumb, use store_nt for memory blocks bigger than half the size of the last-level
cache. You will get a runtime error if the pointer is not properly aligned.

Method store_partial(int n, pointer)
Defined for all integer and floating point vector classes
Description stores the first n elements into an array. The rest of the array

is untouched. 0 ≤ n ≤ (vector size)
Efficiency good if AVX512VL, medium otherwise

// Example :
f l o a t l i s t [4] = {9 .0 f , 9 . 0 f , 9 . 0 f , 9 . 0 f } ;
Vec4f a (1 . 0 f , 1 . 1 f , 1 . 2 f , 1 . 3 f) ;
a . s t o r e_pa r t i a l (2 , l i s t) ; // l i s t conta in s (1 . 0 , 1 . 1 , 9 . 0 , 9 . 0)

Method extract(index)
Defined for all integer, floating point and boolean vector classes
Description gets a single element from a vector
Efficiency good if AVX512VL, medium otherwise

// Example :
Vec4i a (10 ,11 ,12 ,13) ;
i n t b = a . ex t r a c t (2) ; // b = 12

Method operator []
Defined for all integer, floating point and boolean vector classes
Description gets a single element from a vector
Efficiency good if AVX512VL, medium otherwise

The operator [] does exactly the same as the extract method. Note that you can read a vector
element with the [] operator, but not write an element.

// Example :
Vec4i a (10 ,11 ,12 ,13) ;
i n t b = a [2] ; // b = 12
a [3] = 5 ; // not a l lowed !

Method get_low()
Defined for all vector classes of 256 bits or more
Description gets the lower half of a 256-bit vector as a 128-bit vector.

gets the lower half of a 512-bit vector as a 256-bit vector.
Efficiency good

// Example :
Vec8i a (10 ,11 ,12 ,13 ,14 ,15 ,16 ,17) ;
Vec4i b = a . get_low () ; // b = (10 ,11 ,12 ,13)

Method get_high()
Defined for all vector classes of 256 bits or more
Description gets the upper half of a 256-bit vector as a 128-bit vector.

gets the upper half of a 512-bit vector as a 256-bit vector.
Efficiency good

// Example :
Vec8i a (10 ,11 ,12 ,13 ,14 ,15 ,16 ,17) ;
Vec4i b = a . get_high () ; // b = (14 ,15 ,16 ,17)

15

Method size()
Defined for all vector classes
Description static constant member function indicating the number of

elements that the vector can contain
Efficiency good

// Example :
Vec8f a ;
i n t s = a . s i z e () ; // s = 8

Method elementtype()
Defined for all vector classes
Description static constant member function indicating the type of ele-

ments that the vector contains:
1: bits (internal base class)
2: bool (compact)
3: bool (broad)
4: int8_t
5: uint8_t
6: int16_t
7: uint16_t
8: int32_t
9: uint32_t
10: int64_t
11: uint64_t
15: half precision floating point
16: float (single precision floating point)
17: double (double precision floating point)

Efficiency good

// Example :
Vec16s a ;
i n t t = a . e lementtype () ; // t = 6

2.6 Arrays and vectors
Vectors are very useful for array loops with large data sets. The add-on package named ’containers’
provides efficient container class templates for implementing arrays with fixed size and dynamic size,
as well as matrixes. See containers_manual.pdf for details.

If you are not using the add-on package ’containers’ or you are making your own containers then you
need to consider the following.

Data arrays may have fixed size or variable size. A fixed size array is particularly efficient if the size is
known when the program is compiled, or a reasonable upper limit can be set. For example:
i n t const da t a s i z e = 1024 ; // s i z e o f dataset , constant
f l o a t mydata [da t a s i z e] ; // constant s i z e array
. . .
Vec8f x ;
f o r (i n t i = 0 ; i < da t a s i z e ; i += 8) {

x . load (mydata+i) ;
x = x * 0 .1 f + 2 .0 f ;
x . s t o r e (mydata+i) ;

}

16

If the size of the array is determined at runtime then the most efficient solution is to allocate the
array using the operator new:

i n t da t a s i z e = 1024 ; // s i z e o f dataset , v a r i ab l e
f l o a t *mydata = new f l o a t [d a t a s i z e] ; // a l l o c a t e va r i ab l e s i z e array
. . .
Vec8f x ;
f o r (i n t i = 0 ; i < da t a s i z e ; i += 8) {

x . load (mydata+i) ;
x = x * 0 .1 f + 2 .0 f ;
x . s t o r e (mydata+i) ;

}
. . .
d e l e t e [] mydata ; // remember to f r e e the a l l o c a t e d data

It is recommended to align an array by the vector size for optimal performance. See page 73 for
details.

See page 75 for discussion of the case where the data size is not a multiple of the vector size.

A matrix or multidimensional array can be implemented in various ways. If the length of each row is
not more than the vector size, then it is convenient to use one VCL vector for each row. Longer rows
can be contained in multiple VCL vectors. If the number of columns is variable then it is
recommended to store the rows one after another in a linear array. Use padding space at the end of
each row, if necessary, to align the next row by the vector length.

The standard C++ container classes are often inefficient. It is unfortunately common to implement
matrixes as nested container classes such as std::vector<std::vector<data_type>>. Such
constructs are inefficient and should be avoided.

2.7 Using a namespace
In general, there is no need to put the vector class library into a separate namespace. Therefore, the
use of a namespace is optional. You can give the vector class library a namespace, if necessary, by
defining VCL_NAMESPACE, for example:

#de f i n e VCL_NAMESPACE vc l
#inc lude ” v e c t o r c l a s s . h”

us ing namespace vc l ;

// your vec to r code here . . .

17

Chapter 3

Operators

3.1 Arithmetic operators

Operator +, ++, +=
Defined for all integer and floating point vector classes
Description addition
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = a + b ; // c = (30 , 32 , 34 , 36)

Operator -, –, -=, unary -
Defined for all integer and floating point vector classes
Description subtraction
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = a - b ; // c = (-10 , -10 , -10 , -10)

Operator *, *=
Defined for all integer and floating point vector classes
Description multiplication
Efficiency 8 bit integers: poor

16 bit integers: good
32 bit integers: good for SSE4.1 and later instruction set,
poor otherwise
64 bit integers: good for AVX512DQ instruction set, poor
otherwise
float: good
double: good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = a * b ; // c = (200 , 231 , 264 , 299)

18

Operator /, /= (floating point)
Defined for all floating point vector classes
Description division
Efficiency medium

// Example :
Vec4f a (1 . 0 f , 1 . 1 f , 1 . 2 f , 1 . 3 f) ;
Vec4f b (2 . 0 f , 2 . 1 f , 2 . 2 f , 2 . 3 f) ;
Vec4f c = a / b ; // c = (0 .500 f , 0 .524 f , 0 .545 f , 0 .565 f)

Operator /, /= (integer vector divided by scalar)
Defined for all classes of 8-bit, 16-bit and 32-bit integers, signed and

unsigned. Not available for 64-bit integers
Description division by scalar. Results are truncated to integer. All el-

ements are divided by the same divisor. See page 22 for
explanation

Efficiency poor

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
i n t b = 3 ;
Vec4i c = a / b ; // c = (3 , 3 , 4 , 4)

Operator /, /= (integer vector divided by constant)
Defined for all classes of 8-bit, 16-bit and 32-bit integers, signed and

unsigned. Not available for 64-bit integers
Description division by compile-time constant. All elements are divided by

the same divisor. See page 22 for explanation
Efficiency medium (better than division by scalar variable).

Good if divisor is a power of 2

// Example , s i gned :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b = a / const_int (3) ; // b = (3 , 3 , 4 , 4)
// Example , unsigned :
Vec4ui c (10 , 11 , 12 , 13) ;
Vec4ui d = c / const_uint (3) ; // d = (3 , 3 , 4 , 4)

3.2 Logic operators

Operator <<, <<=

Defined for all integer vector classes
Description bit shift left. All vector elements are shifted by the same

amount.
Shifting left by n is a fast way of multiplying by 2n

Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b = a << 2 ; // b = (40 , 44 , 48 , 52)

19

Operator >>, >>=

Defined for all integer vector classes
Description bit shift right. All vector elements are shifted by the same

amount.
Unsigned integers use logical shift.
Signed integers use arithmetic shift (i.e. the sign bit is
copied).
Shifting unsigned right by n is a fast way of dividing by 2n

Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b = a >> 2 ; // b = (2 , 2 , 3 , 3)

Operator ==
Defined for all vector classes
Description test if equal. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4ib c = a == b ; // c = (f a l s e , f a l s e , true , f a l s e)

Operator !=
Defined for all vector classes
Description test if not equal. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4ib c = a != b ; // c = (true , true , f a l s e , t rue)

Operator >
Defined for all integer and floating point vector classes
Description test if bigger. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4ib c = a > b ; // c = (f a l s e , f a l s e , f a l s e , t rue)

Operator >=
Defined for all integer and floating point vector classes
Description test if bigger or equal. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4ib c = a >= b ; // c = (f a l s e , f a l s e , true , t rue)

20

Operator <
Defined for all integer and floating point vector classes
Description test if smaller. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4ib c = a < b ; // c = (true , true , f a l s e , f a l s e)

Operator <=
Defined for all integer and floating point vector classes
Description test if smaller or equal. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4ib c = a <= b ; // c = (true , true , true , f a l s e)

Operator &, &=
Defined for all vector classes
Description bitwise and
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = a & b ; // c = (0 , 1 , 4 , 5)

Operator |, | =
Defined for all vector classes
Description bitwise or
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = a | b ; // c = (30 , 31 , 30 , 31)

Operator ^
Defined for all vector classes
Description bitwise exclusive or
Efficiency good

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = a ^ b ; // c = (30 , 30 , 26 , 26)

Operator ∼
Defined for all boolean and integer vector classes
Description bitwise not
Efficiency good

21

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b = ~a ; // b = (-11 , -12 , -13 , -14)

Operator !
Defined for all vector classes
Description logical not. Result is a boolean vector
Efficiency good

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
Vec4ib b = ! a ; // b = (f a l s e , true , f a l s e , f a l s e)

3.3 Integer division
There are no instructions in the x86 instruction set extensions that are useful for integer vector
division, and such instructions might be quite slow if they existed. Therefore, the vector class library
is using an algorithm for fast integer division. The basic principle of this algorithm can be expressed
in this formula:

a/b ≈ a ∗ (2n/b) >> n

This calculation goes through the following steps:

1. find a suitable value for n

2. calculate 2n/b

3. calculate necessary corrections for rounding errors

4. do the multiplication and shift-right, and apply corrections for rounding errors

This formula is advantageous if multiple numbers are divided by the same divisor b. Steps 1, 2 and 3
need only be done once while step 4 is repeated for each value of the dividend a. The mathematical
details are described in the file vectori128.h. (See also T. Granlund and P. L. Montgomery: Division
by Invariant Integers Using Multiplication, Proceedings of the SIGPLAN 1994 Conference on
Programming Language Design and Implementation)

The implementation in the vector class library uses various variants of this method with appropriate
corrections for rounding errors to get the exact result truncated towards zero.
The way to use this in your code depends on whether the divisor b is a variable or constant, and
whether the same divisor is applied to multiple vectors. This is illustrated in the following examples:

// Div i s i on example A:
// A va r i ab l e d i v i s o r i s app l i ed to one vec to r
Vec4i a (10 , 11 , 12 , 13) ; // div idend i s an i n t e g e r vec to r
i n t b = 3 ; // d i v i s o r i s an i n t e g e r v a r i ab l e
Vec4i c = a / b ; // r e s u l t c = (3 , 3 , 4 , 4)

// D iv i s i on example B:
// The same d i v i s o r i s app l i ed to mul t ip l e v e c t o r s
i n t b = 3 ; // d i v i s o r
Div i sor_i divb (b) ; // t h i s ob j e c t conta in s the r e s u l t s

// o f c a l c u l a t i o n s t ep s 1 , 2 , and 3
f o r (. . .) { // loop through mul t ip l e v e c t o r s

Vec4i a = . . . // get d iv idend

22

a = a / divb ; // do step 4 o f the d i v i s i o n
. . . // s t o r e r e s u l t s

}

// D iv i s i on example C:
// The d i v i s o r i s a constant , known at compi le time
Vec4i a (10 , 11 , 12 , 13) ; // div idend i s i n t e g e r vec to r
Vec4i c = a / const_int (3) ; // r e s u l t c = (3 , 3 , 4 , 4)

Explanation:
The class Divisor_i in example B takes care of the calculation steps 1, 2 and 3 in the algorithm
described above. The overloaded / operator takes a vector on the left hand side and an object of
class Divisor_i on the right hand side. This object is created before the loop with the divisor as
parameter to the constructor. We are saving time by doing this time-consuming calculation only once
while step 4 in the calculation is done multiple times inside the loop by a = a / divb;

In example A, we are also creating an object of class Divisor_i, but this is done implicitly. The
compiler sees an integer on the right hand side of the / operator where it needs an object of class
Divisor_i, and therefore converts the integer b to such an object by calling the constructor
Divisor_i(int).

The following divisor classes are available:

Dividend vector type Divisor class required
Vec16c, Vec32c , Vec64c Divisor_s
Vec16uc, Vec32uc, Vec64uc Divisor_us
Vec8s, Vec16s , Vec32s Divisor_s
Vec8us, Vec16us , Vec32us Divisor_us
Vec4i, Vec8i, Vec16i Divisor_i
Vec4ui, Vec8ui, Vec16ui Divisor_ui

If the divisor is a constant and the value is known at compile time, then we can use the method in
example C. The implementation here uses macros and templates to do the calculation steps 1, 2 and
3 at compile time rather than at execution time. This makes the code even faster. The expression to
put on the right-hand side of the / operator looks as follows:

Dividend vector type Divisor expression
Vec16c, Vec32c, Vec64c const_int
Vec16uc, Vec32uc, Vec64uc const_uint
Vec8s, Vec16s, Vec32s const_int
Vec8us, Vec16us, Vec32us const_uint
Vec4i, Vec8i, Vec16i const_int
Vec4ui, Vec8ui, Vec16ui const_uint

The compiler will generate an error message if the parameter to const_int or const_uint is not a
valid compile-time constant. (A valid compile time constant can contain integer literals and
operators, as well as macros that are expanded to compile time constants, but not ordinary function
calls).

A further advantage of the method in example C is that the code is able to use different methods for
different values of the divisor. The division is particularly fast if the divisor is a power of 2. Make sure
to use const_int or const_uint on the right hand side of the / operator if you are dividing by 2, 4, 8,
16, etc.

Division is faster for vectors of 16-bit integers than for vectors of 8-bit or 32-bit integers. There is no
support for division of vectors of 64-bit integers. Unsigned division is faster than signed division.

23

Chapter 4

Functions

4.1 Integer functions

Function horizontal_add
Defined for all integer vector classes
Description calculates the sum of all vector elements
Efficiency medium. For best performance, use normal (vertical) addition

where possible.

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
i n t b = horizontal_add (a) ; // b = 46

Function horizontal_add_x
Defined for all 8-bit, 16-bit and 32-bit integer vector classes
Description calculates the sum of all vector elements. The sum is calcu-

lated with a higher number of bits to avoid overflow
Efficiency medium (slower than horizontal_add)

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
int64_t b = horizontal_add_x (a) ; // b = 46

Function horizontal_min, horizontal_max
Defined for all integer vector classes
Description Returns the lowest or highest element in a vector.
Efficiency medium

// Example :
Vec4i a (1 , 8 , -5 , 3) ;
i n t b = horizontal_min (a) ; // b = -5
i n t c = horizontal_max (a) ; // c = 8

Function add_saturated
Defined for all 8-bit, 16-bit and 32-bit integer vector classes
Description same as operator +. Overflow is handled by saturation rather

than wrap-around
Efficiency fast for 8-bit and 16-bit integers. Medium for 32-bit integers

// Example :
Vec4i a (0 x10000000 , 0x20000000 , 0x30000000 , 0x40000000) ;
Vec4i b(0 x30000000 , 0x40000000 , 0x50000000 , 0x60000000) ;

24

Vec4i c = add_saturated (a , b) ;
// c = (0 x40000000 , 0x60000000 , 0x7FFFFFFF, 0x7FFFFFFF)
Vec4i d = a + b ;
// d = (0 x40000000 , 0x60000000 , -0 x80000000 , -0 x60000000)

Function sub_saturated
Defined for all 8-bit, 16-bit and 32-bit integer vector classes
Description same as operator -. Overflow is handled by saturation rather

than wrap-around
Efficiency fast for 8-bit and 16-bit integers. Medium for 32-bit integers

// Example :
Vec4i a (-0 x10000000 , - 0 x20000000 , - 0 x30000000 , - 0 x40000000) ;
Vec4i b(0x30000000 , 0x40000000 , 0x50000000 , 0x60000000) ;
Vec4i c = sub_saturated (a , b) ;
// c = (-0 x40000000 , - 0 x60000000 , - 0 x80000000 , - 0 x80000000)
Vec4i d = a - b ;
// d = (-0 x40000000 , - 0 x60000000 , - 0 x80000000 , 0x60000000)

Function max
Defined for all integer vector classes
Description returns the biggest of two values
Efficiency medium for 64-bit integers with instruction sets lower than

SSE4.2. Fast otherwise

Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4i c = max(a , b) ; // c = (14 , 13 , 12 , 13)

Function min
Defined for all integer vector classes
Description returns the smallest of two values
Efficiency medium for 64-bit integers with instruction sets lower than

SSE4.2. Fast otherwise

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (14 , 13 , 12 , 11) ;
Vec4i c = min (a , b) ; // c = (10 , 11 , 12 , 11)

Function abs
Defined for all signed integer vector classes
Description calculates the absolute value
Efficiency medium

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
Vec4i b = abs (a) ; // b = (1 , 0 , 1 , 2)

Function abs_saturated
Defined for all signed integer vector classes
Description calculates the absolute value. Overflow saturates to make

sure the result is never negative when the input is INT_MIN
Efficiency medium (slower than abs)

25

// Example :
Vec4i a (-0 x80000000 , -1 , 0 , 1) ;
Vec4i b = abs_saturated (a) ; // b=(0x7FFFFFFF, 1 , 0 , 1)
Vec4i c = abs (a) ; // c=(-0x80000000 , 1 , 0 , 1)

Function rotate_left(vector, int)
Defined for all signed integer vector classes
Description rotates the bits of each element. Use a negative count to

rotate right
Efficiency 8 bit: poor

16 bit: medium
32 and 64 bit: good for AVX512DQ instruction set, medium
otherwise.

// Example :
Vec4i a (0 x12345678 , 0x0000FFFF , 0xA000B000 , 0x00000001) ;
Vec4i b = ro t a t e_ l e f t (a , 8) ;
// b = (0 x34567812 , 0x00FFFF00 , 0x00B000A0 , 0x00000100)

Function vector shift_bytes_up<n>(vector)
vector shift_bytes_down<n>(vector)

Defined for Vec16c, Vec32c, Vec64c
Description shifts the bytes of a vector up or down and inserts zeroes at

the vacant places
Efficiency Vec16c: Good for SSSE3, medium otherwise

Vec32c: Good for AVX2, medium otherwise
Vec64c: Good for AVX512BW, medium otherwise

// Example :
Vec16c a (10 ,11 ,12 ,13 ,14 ,15 , 16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25) ;
Vec16c b = shift_bytes_up<5>(a) ;
// b = (0 ,0 , 0 , 0 , 0 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20)

4.2 Floating point simple functions

Function horizontal_add
Defined for all floating point vector classes
Description calculates the sum of all vector elements
Efficiency medium. For best performance, use normal (vertical) addition

where possible.

// Example :
Vec4f a (1 . 0 f , 1 . 1 f , 1 . 2 f , 1 . 3 f) ;
f l o a t b = horizontal_add (a) ; // b = 4 .6

Function max
min

Defined for all floating point vector classes
Description returns the biggest/smallest of two values
Efficiency good

max(a,b) is equivalent to a > b ? a : b
min(a,b) is equivalent to a < b ? a : b

26

These functions will not return a NAN if the first parameter is NAN.
These functions make no distinction between 0 and -0.

// Example :
Vec4f a (1 . 0 f , 1 . 1 f , 1 . 2 f , 1 . 3 f) ;
Vec4f b (1 . 4 f , 1 . 3 f , 1 . 2 f , 1 . 1 f) ;
Vec4f c = max(a , b) ; // c = (1 . 4 f , 1 . 3 f , 1 . 2 f , 1 . 3 f)

Function maximum
minimum

Defined for all floating point vector classes
Description returns the biggest/smallest of two values
Efficiency good, but slower than max / min

These functions are similar to max and min, but sure to propagate NAN values.
The sign of zero is ignored unless SIGNED_ZERO is defined.

Function horizontal_min, horizontal_max
Defined for all floating point vector classes
Description Returns the lowest or highest element in a vector.

NANs are propagated. The sign of zero is ignored.
Efficiency medium

// Example :
Vec4i a (1 , 8 , -5 , 3) ;
i n t b = horizontal_min (a) ; // b = -5
i n t c = horizontal_max (a) ; // c = 8

Function abs
Defined for all floating point vector classes
Description gets the absolute value
Efficiency good

// Example :
Vec4f a (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4f b = abs (a) ; // b = (1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f)

Function change_sign<i0, i1, ...>(vector)
Defined for all floating point vector classes
Description changes sign of selected vector elements.

Each template parameter is 1 for changing sign of the corre-
sponding element, and 0 for no change.

Efficiency good

// Example :
Vec4f a (10 . 0 f , 11 .0 f , - 12 .0 f , 13 .0 f) ;
Vec4f b = change_sign <0 ,1 ,1 ,0>(a) ; // b = (10 . f , - 11 . f , 12 . f , 13 . f)

Function sign_combine(vector a, vector b)
Defined for all floating point vector classes
Description Returns the value of a, with the sign inverted if b has its sign

bit set.
Corresponds to select(sign_bit(b), -a, a)

Efficiency good

27

// Example :
Vec4f a (- 2 . 0 f , - 1 . 0 f , 0 . 0 f , 1 . 0 f) ;
Vec4f b (- 1 0 . f , 0 . 0 f , - 20 . f , 30 . f) ;
Vec4f c = sign_combine (a , b) ; // c = (2 . 0 f , - 1 . 0 f , - 0 . 0 f , 1 . 0 f)

Function sign_bit
Defined for all floating point vector classes
Description returns a boolean vector with true for elements that have the

sign bit set, including -0.0, -INF, and -NAN
Efficiency medium

// Example :
Vec4f a (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4fb b = s ign_bit (a) ; // b = (true , f a l s e , f a l s e , f a l s e)

Function sqrt
Defined for all floating point vector classes
Description calculates the square root
Efficiency poor

// Example :
Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f b = sq r t (a) ; // b = (0 .000 f , 1 .000 f , 1 .414 f , 1 .732 f)

Function square
Defined for all floating point vector classes
Description calculates the square
Efficiency good

// Example :
Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f b = square (a) ; // b = (0 . 0 f , 1 . 0 f , 4 . 0 f , 9 . 0 f)

Function pow(vector x, int n)
Defined for all floating point vector classes
Description raises all vector elements to the same integer power. Will

generate a compiler error if n is floating point and vector-
math_exp.h is not included, or in general if n is not of type
int. See page 59 for pow with floating point exponent.

Precision slightly imprecise for high values of n due to accumulation of
rounding errors

Efficiency medium

// Example :
Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
i n t b = 3 ;
Vec4f c = pow(a , b) ; // c = (0 . 0 f , 1 . 0 f , 8 . 0 f , 27 .0 f)

Function pow_const(vector x, const int n)
Defined for all floating point vector classes
Description raises all vector elements to the same integer power n, where

n is a compile-time constant
Precision slightly imprecise for high values of n due to accumulation of

rounding errors
Efficiency medium, often better than pow(vector, int)

28

// Example :
Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f c = pow_const (a , 3) ; // c = (0 . 0 f , 1 . 0 f , 8 . 0 f , 27 .0 f)

Function round
Defined for all floating point vector classes
Description round to nearest integer (even value if two values are equally

near). The value is returned as a floating point vector.
See also roundi and round_to_int32 on page 36.

Efficiency good if SSE4.1 or higher instruction set

// Example :
Vec4f a (1 . 0 f , 1 . 4 f , 1 . 5 f , 1 . 6 f)
Vec4f b = round (a) ; // b = (1 . 0 f , 1 . 0 f , 2 . 0 f , 2 . 0 f)

Function truncate
Defined for all floating point vector classes
Description truncates number towards zero. The value is returned as a

floating point vector.
See also truncatei and truncate_to_int32 on page 37.

Efficiency good if SSE4.1 or higher instruction set
Note may be slightly inaccurate for x > 107 if instruction set is less

than SSE4.1

// Example :
Vec4f a (1 . 0 f , 1 . 5 f , 1 . 9 f , 2 . 0 f)
Vec4f b = truncate (a) ; // b = (1 . 0 f , 1 . 0 f , 1 . 0 f , 2 . 0 f)

Function floor
Defined for all floating point vector classes
Description rounds number towards −∞. The value is returned as a

floating point vector
Efficiency good if SSE4.1 or higher instruction set
Note may be slightly inaccurate for x > 107 if instruction set is less

than SSE4.1

// Example :
Vec4f a (- 0 . 5 f , 1 . 5 f , 1 . 9 f , 2 . 0 f)
Vec4f b = f l o o r (a) ; // b = (- 1 . 0 f , 1 . 0 f , 1 . 0 f , 2 . 0 f)

Function ceil
Defined for all floating point vector classes
Description rounds number towards +∞. The value is returned as a

floating point vector
Efficiency good if SSE4.1 or higher instruction set
Note may be slightly inaccurate for x > 107 if instruction set is less

than SSE4.1

// Example :
Vec4f a (- 0 . 5 f , 1 . 1 f , 1 . 9 f , 2 . 0 f)
Vec4f b = c e i l (a) ; // b = (0 . 0 f , 2 . 0 f , 2 . 0 f , 2 . 0 f)

29

Function approx_recipr
Defined for single and half precision floating point vectors
Description fast approximate calculation of reciprocal
Precision the relative accuracy depends on the instruction set:

Default: 2−11

AVX512F: 2−14

AVX512ER: full precision
Efficiency good

// Example :
Vec4f a (1 . 5 f , 2 . 0 f , 3 . 0 f , 4 . 0 f)
Vec4f b (0 . 5 f , 1 . 0 f , 0 . 5 f , 1 . 0 f)
Vec4f c = a * approx_recipr (b) ; // c approximates a/b

Function approx_rsqrt
Defined for single and half precision floating point vectors
Description reciprocal square root. Fast approximate calculation of value

to the power of -0.5
Precision the relative accuracy depends on the instruction set:

Default: 2−11

AVX512F: 2−14

AVX512ER: full precision
Efficiency good

// Example :
Vec4f a (1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f)
Vec4f b = approx_rsqrt (a) * a ; // b approximates sq r t (a)

30

Chapter 5

Boolean operations and per-element
branches

Consider this piece of C++ code:

i n t a [4] , b [4] , c [4] , d [4] ;
. . .

f o r (i n t i = 0 ; i < 4 ; i++) {
d [i] = (a [i] > 0 && a [i] < 10) ? b [i] : c [i] ;

}

We can do this with vectors in the following way:

Vec4i a , b , c , d ;
. . .

d = s e l e c t (a > 0 & a < 10 , b , c) ;

The select function is similar to the ?: operator. It has three vector parameters: The first parameter
is a boolean vector that chooses between the elements of the second and the third vector parameter.

The relational operators >, >=, <, <=, ==, != produce boolean vectors, which accept the boolean
operations &, |, ∧, ∼ (and, or, exclusive or, not).

In the above example, the expressions a > 0 and a < 10 are boolean vectors of type Vec4ib. The
boolean vectors must have a type that matches the data vectors they are used with. Table 2.3 on
page 9 shows which boolean vector class to use for each vector type.

The vector elements that are not selected are calculated anyway because normally all parts of a vector
are calculated. For example:

Vec4f a (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4f b = s e l e c t (a >= 0.0 f , s q r t (a) , 0 . 0 f) ;

Here, we will be calculating the square root of -1 even though we are not using it. This will not cause
problems if floating point exceptions are masked off, which they normally are. A safe solution that
works even if floating point exceptions are enabled would be:

Vec4f a (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4f b = sq r t (max(a , 0 . 0 f)) ;

Likewise, the & and | operators are calculating both input operands, even if the second operand is not
needed. The following examples illustrates this:

// array ve r s i on :
f l o a t a [4] = {0 .0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f } ;

31

f l o a t b [4] ;
f o r (i n t i = 0 ; i < 4 ; i++) {

i f (a [i] > 0 .0 f && 1.0 f /a [i] != 4 .0 f) {
b [i] = a [i] ;

}
e l s e {

b [i] = 1 .0 f ;
}

}

and the vector version of the same:

Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f b = s e l e c t (a > 0 .0 f & 1 .0 f /a != 4 .0 f , a , 1 . 0 f) ;

In the array version, we will never divide by zero because the && operator does not evaluate the
second operand when the first operand is false. But in the vector version, we are indeed dividing by
zero because the & operator always evaluates both operands. The vector class library defines the
operators && and || as synonyms for & and | for convenience, but they are still doing the bitwise
AND or OR operation, so & and | are actually more representative of what these operators really do.
This example should be changed to:

Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f b = s e l e c t (a > 0 .0 f & a != 0 .25 f , a , 1 . 0 f) ;

5.1 Internal representation of boolean vectors
The way boolean vectors are stored depends on the instruction set and the Vector Class Library
(VCL) version. Older instruction sets have the boolean vectors stored with the same number of bits
as the data vectors they are applied to (broad boolean vectors). The later instruction sets AVX512
and AVX512VL allow boolean vectors to be stored with only one bit for each element (compact
boolean vectors).

Version 1.xx of the VCL is using the broad boolean vectors for the sake of backwards compatibility,
while version 2.xx is prioritizing the more efficient compact boolean vectors when the appropriate
instruction set is enabled. The boolean vector sizes are summarized in the following table.

Data vector size
and instruction set

VCL version 1
Boolean vectors

VCL version 2
Boolean vectors

128 bits broad broad
128 bits with AVX512VL broad compact
256 bits broad broad
256 bits with AVX512VL broad compact
512 bits broad broad
512 bits with AVX512F compact compact

The broad boolean vectors are stored as integer vectors with the same number of bits per element as
the integer or floating point vectors they are used for. For example, the broad boolean vector class
Vec4fb is stored as a vector of four 32-bit integers because it is used with vectors Vec4f of four single
precision floating point numbers, using 32 bits each. The broad boolean vector class Vec4db is stored
as a vector of four 64-bit integers because it is used with vectors Vec4d of four double precision
floating point numbers, using 64 bits each. Note that the integer representation of true in a broad
boolean vector element is not 1, but -1. The representation of false is 0. Any other values than 0 and

32

-1 in broad boolean vectors will produce wrong and inconsistent results that depend on the instruction
set.

The compact boolean vectors are stored with one bit per element (at least 8 bits). You should make
no assumption about how boolean vectors are stored if your code may be compiled for different
instruction sets or different versions of VCL. For example, Vec16ib uses 16 bits of storage when
compiling for AVX512, but 512 bits of storage when compiling for AVX2. Do not store boolean
vectors directly to binary files, and do not transmit boolean vectors between different functions that
may be compiled for different instruction sets or different VCL versions.

Different compact boolean vectors are mutually compatible if they have the same number of
elements. Different broad boolean vectors are mutually compatible if they have the same number of
elements and the same number of bits. Broad and compact boolean vectors are not compatible with
each other. See page 42 for conversion between different types of boolean vectors.

5.2 Functions for use with booleans

Function vector select(boolean vector s, vector a, vector b)
Defined for all integer and floating point vector classes
Description branch per element.

result[i] = s[i] ? a[i] : b[i]
Efficiency good

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
Vec4i b = s e l e c t (a>0, a+10, a - 10) ; // b = (-11 , - 10 ,11 ,12)

Function vector if_add(boolean vector f, vector a, vector b)
Defined for all integer and floating point vector classes
Description conditional addition

result[i] = f[i] ? (a[i] + b[i]) : a[i]
Efficiency good

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
Vec4i b = if_add (a < 0 , a , 100) ; // b = (99 , 0 , 1 , 2)

Function vector if_sub(boolean vector f, vector a, vector b)
Defined for all integer and floating point vector classes
Description conditional subtraction

result[i] = f[i] ? (a[i] - b[i]) : a[i]
Efficiency good

Function vector if_mul(boolean vector f, vector a, vector b)
Defined for all integer and floating point vector classes
Description conditional multiplication

result[i] = f[i] ? (a[i] * b[i]) : a[i]
Efficiency good

33

Function vector if_div(boolean vector f, vector a, vector b)
Defined for all floating point vector classes
Description conditional division

result[i] = f[i] ? (a[i] / b[i]) : a[i]
Efficiency medium

Function vector andnot(vector, vector)
Defined for all boolean vector classes
Description andnot(a,b) = a & ∼ b
Efficiency good

Function bool horizontal_and(boolean vector)
Defined for all boolean vector classes
Description The output is the AND combination of all elements
Efficiency Medium for broad boolean vectors. Better if SSE4.1 or later. Good for

compact boolean vectors

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
bool b = horizontal_and (a > 0) ; // b = f a l s e

Function bool horizontal_or(boolean vector)
Defined for all boolean vector classes
Description The output is the OR combination of all elements
Efficiency Medium for broad boolean vectors. Better if SSE4.1 or later. Good for

compact boolean vectors

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
bool b = hor i zonta l_or (a > 0) ; // b = true

Function int horizontal_find_first(boolean vector)
Defined for all boolean vector classes
Description Returns an index to the first element that is true. Returns -1 if all ele-

ments are false
Efficiency medium

// Example :
Vec4i a (1 , 2 , 3 , 4) ;
Vec4i b (0 , 2 , 3 , 5) ;
i n t c = ho r i z on t a l_ f i nd_ f i r s t (a == b) ; // c = 1

Function unsigned int horizontal_count(boolean vector)
Defined for all boolean vector classes
Description counts the number of elements that are true
Efficiency medium if SSE4.2 or later

// Example :
Vec4i a (1 , 2 , 3 , 4) ;
Vec4i b (0 , 2 , 3 , 5) ;
i n t c = hor izonta l_count (a == b) ; // c = 2

34

Chapter 6

Conversion between vector types

Below is a list of methods and functions for conversion between different vector types, vector sizes or
precisions.

6.1 Conversion between data vector types

Method conversion between vector class and intrinsic vector type
Defined for all integer and floating point vector classes
Description conversion between a vector class and the corresponding intrinsic vec-

tor type __m128, __m128d, __m128i, __m256, __m256d, __m256i,
__m512, __m512d, __m512i can be done implicitly or explicitly.
Boolean vectors can be converted to their internal representation, which
is an integer vector for broad boolean vectors, or a single integer for
compact boolean vectors.

Efficiency good

// Example :
Vec4i a (0 , 1 , 2 , 3) ;
__m128i b = a ; // b = 0x00000003000000020000000100000000
Vec4i c = b ; // c = (0 , 1 , 2 , 3)

Method conversion from scalar to vector
Defined for all integer and floating point vector classes
Description conversion from a scalar (single value) to a vector can be done explicitly

by calling a constructor, or implicitly by putting a scalar where a vector is
expected. All vector elements get the same value.

Efficiency good for constant. Medium for variable as parameter

// Example :
Vec4i a , b ;
a = Vec4i (5) ; // e x p l i c i t conver s i on . a = (5 , 5 , 5 , 5)
b = a + 3 ; // imp l i c i t conver s i on to Vec4i . b = (8 , 8 , 8 , 8)

Method conversion between signed and unsigned integer vectors
Defined for all integer vector classes
Description Conversion between signed and unsigned integer vectors can be done

implicitly or explicitly. Overflow and underflow wraps around.
Efficiency good

// Example :
Vec4i a (- 1 , 0 , 1 , 2) ; // s igned vec to r

35

Vec4ui b = a ; // imp l i c i t conver s i on to unsigned .
// b = (0xFFFFFFFF, 0 , 1 , 2)

Vec4ui c = Vec4ui (a) ; // same , with e x p l i c i t conver s i on
Vec4i d = c ; // convert back to s igned

Method conversion between different integer vector types
Defined for all integer vector classes
Description Conversion can be done implicitly or explicitly between all integer vector

classes with the same total number of bits. This conversion does not
change any bits, just the grouping of bits into elements is changed.

Efficiency good

// Example :
Vec8s a (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7) ;
Vec4i b ;
b = a ; // b = (0 x1000 , 0x3002 , 0x5004 , 0x7006)

Function reinterpret_d, reinterpret_f, reinterpret_i, reinterpret_h
Defined for all integer and floating point vector classes
Description Reinterprets a vector as a different type with the same total number of

bits. No bits are changed, only interpreted differently (bit casting).
reinterpret_d is used for converting to Vec2d, Vec4d, or Vec8d,
reinterpret_f is used for converting to Vec4f, Vec8f, or Vec16f,
reinterpret_i is used for converting to any integer vector type,
reinterpret_h is used for converting to Vec8h, Vec16h, or Vec32h.

Efficiency good

// Example :
Vec4f a (1 . 0 f , 1 . 5 f , 2 . 0 f , 2 . 5 f) ;
Vec4i b = r e i n t e r p r e t_ i (a) ;
// b = (0 x3F800000 , 0x3FC00000 , 0x40000000 , 0x40200000)

Function Vec8s roundi(Vec8h)
Vec16s roundi(Vec16h)
Vec32s roundi(Vec32h)
Vec4i roundi(Vec4f)
Vec8i roundi(Vec8f)
Vec16i roundi(Vec16f)
Vec2q roundi(Vec2d)
Vec4q roundi(Vec4d)
Vec8q roundi(Vec8d)

Defined for all floating point vector classes
Description Rounds floating point numbers to nearest integer and returns an integer

vector of the same size. Where two integers are equally near, the even
integer is returned.
INF input may give INT_MAX or INT_MIN depending on the implemen-
tation and the instruction set.

Efficiency float types: good
double types: good if AVX512DQ instruction set, otherwise poor

// Example :
Vec4f a (1 . 0 f , 1 . 5 f , 2 . 0 f , 2 . 5 f) ;
Vec4i b = round_to_int (a) ; // b = (1 , 2 , 2 , 2)

36

Function Vec4i round_to_int32(Vec2d)
Vec4i round_to_int32(Vec2d, Vec2d)
Vec4i round_to_int32(Vec4d)
Vec8i round_to_int32(Vec8d)

Defined for Vec2d, Vec4d, Vec8d
Description rounds double precision floating point numbers and returns vector of

32-bit integers. Where two integers are equally near, the even integer is
returned.

Efficiency good

// Example :
Vec4d a (1 . 0 , 1 . 5 , 2 . 0 , 2 . 5) ;
Vec4i b = round_to_int32 (a) ; // b = (1 , 2 , 2 , 2)

Function Vec8s truncatei(Vec8h)
Vec16s truncatei(Vec16h)
Vec32s truncatei(Vec32h)
Vec4i truncatei(Vec4f)
Vec8i truncatei(Vec8f)
Vec16i truncatei(Vec16f)
Vec2q truncatei(Vec2d)
Vec4q truncatei(Vec4d)
Vec8q truncatei(Vec8d)

Defined for all floating point vector classes
Description truncates floating point numbers towards zero and returns signed integer

vector of the same size.
INF input may give INT_MAX or INT_MIN depending on the implemen-
tation and the instruction set.

Efficiency float types: good
double types: good if AVX512DQ instruction set, otherwise poor

// Example :
Vec4f a (- 1 . 6 f , 1 . 5 f , 2 . 0 f , 2 . 9 f) ;
Vec4i b = truncate_to_int (a) ; // b = (-1 , 1 , 2 , 2)

Function Vec4i truncate_to_int32(Vec2d, Vec2d)
Vec4i truncate_to_int32(Vec4d)
Vec8i truncate_to_int32(Vec8d)

Defined for Vec2d, Vec4d, Vec8d
Description truncates double precision floating point numbers towards zero and re-

turns signed vector of 32-bit integers.
Efficiency good

// Example :
Vec4d a (- 1 . 5 , 1 . 5 , 2 . 0 , 2 . 9) ;
Vec4i b = truncate_to_int32 (a) ; // b = (-1 , 1 , 2 , 2)

Function Vec4f to_float(Vec4i)
Vec8f to_float(Vec8i)
Vec16f to_float(Vec16i)

Defined for Vec4i, Vec8i, Vec16i
Description converts signed 32-bit integers to single precision float
Efficiency good

// Example :

37

Vec4i a (0 , 1 , 2 , 3) ;
Vec4f b = to_f l oa t (a) ; // b = (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f)

Function Vec4f to_float(Vec4ui)
Vec8f to_float(Vec8ui)
Vec16f to_float(Vec16ui)

Defined for Vec4ui, Vec8ui, Vec16ui
Description converts unsigned integers to single precision float
Efficiency good if AVX512VL instruction set. Poor otherwise

// Example :
Vec4ui a (0 , 1 , 2 , 3) ;
Vec4f b = to_f l oa t (a) ; // b = (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f)

Function Vec4f to_float(Vec2d)
Vec4f to_float(Vec4d)
Vec8f to_float(Vec8d)

Defined for Vec2d, Vec4d, Vec8d
Description converts floating point vectors from double precision to single precision.
Efficiency good

Function Vec4f convert8h_4f(Vec8h)
Vec8f to_float(Vec8h)
Vec16f to_float(Vec16h)

Defined for Vec8h, Vec16h
Description converts floating point vectors from half precision to single precision.
Efficiency good if F16C or AVX512-FP16

Function Vec8h convert4f_8h(Vec4f)
Vec8h to_float16(Vec8f)
Vec16h to_float16(Vec16f)

Defined for Vec4f, Vec8f, Vec16f
Description converts floating point vectors from single precision to half precision.
Efficiency good if F16C or AVX512-FP16

Function Vec4d to_double(Vec4i)
Vec8d to_double(Vec8i)

Defined for Vec4i, Vec8i
Description converts signed 32-bit integers to double precision float. The output

vector is larger than the input vector.
Efficiency medium

// Example :
Vec4i a (0 , 1 , 2 , 3) ;
Vec4d b = to_double (a) ; // b = (0 . 0 , 1 . 0 , 2 . 0 , 3 . 0)

38

Function Vec2d to_double(Vec2q x)
Vec4d to_double(Vec4q x)
Vec8d to_double(Vec8q x)
Vec2d to_double(Vec2uq x)
Vec4d to_double(Vec4uq x)
Vec8d to_double(Vec8uq x)

Defined for Vec2q, Vec4q, Vec8q, Vec2uq, Vec4uq, Vec8uq
Description converts signed or unsigned 64-bit integers to double precision float
Efficiency good if AVX512DQ and AVX512VL instruction sets, otherwise poor.

// Example :
Vec2q a (0 , 1) ;
Vec2d b = to_double (a) ; // b = (0 . 0 , 1 . 0)

Function Vec4d to_double(Vec4f x)
Vec8d to_double(Vec8f x)

Defined for Vec4f, Vec8f
Description converts floating point vectors from single precision to double precision.

The total number of bits in the vector is doubled
Efficiency good

Function Vec2d to_double_low(Vec4i)
Vec2d to_double_high(Vec4i)

Defined for Vec4i
Description converts signed 32-bit integers to double precision float
Efficiency medium

// Example :
Vec4i a (0 , 1 , 2 , 3) ;
Vec2d b = to_double_low (a) ; // b = (0 . 0 , 1 . 0)
Vec2d c = to_double_high (a) ; // c = (2 . 0 , 3 . 0)

Method concatenating vectors
Defined for All 128-bit and 256-bit vector classes and corresponding boolean vector

classes
Description Two vectors can be concatenated into one vector of the double size by

calling a constructor or the function concatenate2.
Efficiency good

// Example :
Vec4i a (10 ,11 ,12 ,13) ;
Vec4i b (20 ,21 ,22 ,23) ;
Vec8i c (a , b) ; // c = (10 ,11 ,12 ,13 ,20 ,21 ,22 ,23)
Vec8i d = concatenate2 (a , b) ; // same as c

Method get_low, get_high
Defined for all 256-bit and 512-bit vector classes
Description One big vector can be split into two vectors of half the size by calling the

methods get_low and get_high
Efficiency good

// Example :
Vec8i a (10 ,11 ,12 ,13 ,14 ,15 ,16 ,17) ;
Vec4i b = a . get_low () ; // b = (10 ,11 ,12 ,13)
Vec4i c = a . get_high () ; // c = (14 ,15 ,16 ,17)

39

Method extend_z
Defined for All 128-bit and 256-bit vector classes and corresponding boolean vector

classes
Description The vector is extended to double size by adding zeroes.
Efficiency good

// Example :
Vec4i a (10 ,11 ,12 ,13) ;
Vec8i b = extend_z (a) ; // b = (10 , 11 , 12 , 13 , 0 , 0 , 0 , 0)

Function extend
Defined for Vec16c, Vec16uc, Vec32c, Vec32uc, Vec8s, Vec8us, Vec16s, Vec16us,

Vec4i, Vec4ui, Vec8i, Vec8ui,
Description Extends integers to a larger number of bits per element. The total num-

ber of bits in the vector is doubled. Unsigned integers are zero-extended,
signed integers are sign-extended.

Efficiency good for instruction sets that support the highest vector size, medium
otherwise.

// Example :
Vec8s a (-2 , -1 , 0 , 1 , 2 , 3 , 4 , 5) ;
Vec8i b = extend (a) ; // b = (-2 , -1 , 0 , 1 , 2 , 3 , 4 , 5)

Function extend_low, extend_high
Defined for Vec16c, Vec16uc, Vec32c, Vec32uc, Vec64c, Vec64uc, Vec8s, Vec8us,

Vec16s, Vec16us, Vec32s, Vec32us, Vec4i, Vec4ui, Vec8i, Vec8ui, Vec16i,
Vec16ui

Description Extends integers to a larger number of bits per element. Only the lower
or upper half of the vector is converted. The total number of bits in the
vector is unchanged. Unsigned integers are zero-extended, signed integers
are sign-extended.

Efficiency good

// Example :
Vec8s a (-2 , -1 , 0 , 1 , 2 , 3 , 4 , 5) ;
Vec4i b = extend_low (a) ; // b = (-2 , -1 , 0 , 1)
Vec4i c = extend_high (a) ; // c = (2 , 3 , 4 , 5)

Function extend_low, extend_high
Defined for Vec4f, Vec8f, Vec16f
Description extends single precision floating point numbers to double precision. Only

the lower or upper half of the vector is converted. The total number of
bits in the vector is unchanged.

Efficiency good

// Example :
Vec4f a (1 . 0 f , 1 . 1 f , 1 . 2 f , 1 . 3 f) ;
Vec2d b = extend_low (a) ; // b = (1 . 0 , 1 . 1)
Vec2d c = extend_high (a) ; // c = (1 . 2 , 1 . 3)

40

Function compress
Defined for Vec16s, Vec16us, Vec32s, Vec32us, Vec8i, Vec8ui, Vec16i, Vec16ui,

Vec4q, Vec4uq, Vec8q, Vec8uq
Description Reduces integers to a lower number of bits per element. The total num-

ber of bits in the vector is halved. There is no overflow check. The upper
bits are simply cut off (wrap around).

Efficiency good for instruction sets that support the highest vector size, medium
otherwise .

// Example :
Vec8q a (10 , 11 , 12 , 13 , 14 , 15 , 16 , 17) ;
Vec8i b = compress (a) ; // b = (10 , 11 , 12 , 13 , 14 , 15 , 16 , 17)

Function compress (with two vector parameters)
Defined for Vec8s, Vec8us, Vec16s, Vec16us, Vec32s, Vec32us, Vec4i, Vec4ui, Vec8i,

Vec8ui, Vec16i, Vec16ui, Vec2q, Vec2uq, Vec4q, Vec4uq, Vec8q, Vec8uq
Description Packs two integer vectors into a single vector with the same total number

of bits, by reducing each integer to a lower number of bits per element.
There is no overflow check. The upper bits are simply cut off (wrap
around).

Efficiency medium

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec8s c = compress (a , b) ; // c = (10 ,11 ,12 ,13 ,20 ,21 ,22 ,23)

Function compress (with two vector parameters)
Defined for Vec2d, Vec4d, Vec8d
Description reduces double precision floating point numbers to single precision. Two

double precision vectors are packed into one single precision vector with
the same total number of bits.

Efficiency medium

// Example :
Vec2d a (1 . 0 , 1 . 1) ;
Vec2d b (2 . 0 , 2 . 1) ;
Vec4f c = compress (a , b) ; // c = (1 . 0 f , 1 . 1 f , 2 . 0 f , 2 . 1 f)

Function compress_saturated (with one vector parameter)
Defined for Vec16s, Vec16us, Vec32s, Vec32us, Vec8i, Vec8ui, Vec16i, Vec16ui,

Vec4q, Vec4uq, Vec8q, Vec8uq
Description Packs an integer vector into a vector with the same number of elements

and half the number of bits per element. Overflow and underflow satu-
rates

Efficiency medium (worse than compress in most cases)

Function compress_saturated (with two vector parameters)
Defined for Vec8s, Vec8us, Vec16s, Vec16us, Vec32s, Vec32us, Vec4i, Vec4ui, Vec8i,

Vec8ui, Vec16i, Vec16ui, Vec2q, Vec2uq, Vec4q, Vec4uq, Vec8q, Vec8uq
Description Packs two integer vectors into a single vector with the same total number

of bits, by reducing each integer to a lower number of bits per element.
Overflow and underflow saturates

Efficiency medium (worse than compress in most cases)

41

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec8s c = compress_saturated (a , b) ;
// c = (10 ,11 ,12 ,13 ,20 ,21 ,22 ,23)

6.2 Conversion between boolean vector types

Function to_bits
Defined for all boolean vectors
Description converts a boolean vector to an integer with one bit per element
Efficiency good for compact boolean vectors. Medium for broad boolean vectors

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (12 , 11 , 10 , 9) ;
Vec4ib f = a > b ; // (f a l s e , f a l s e , true , t rue)
uint8_t g = to_bits (f) ; // = 0b1100
// The order i s not reversed , but in the comments above ,
// the vec to r e lements are l i s t e d in l i t t l e endian order ,
// whi l e the binary number i s wr i t t en in big endian order .

Method load_bits
Defined for all boolean vectors
Description converts an integer bit-field to a boolean vector
Efficiency good for compact boolean vectors. Medium for broad boolean vectors

// Example :
uint8_t a = 0b11000010 ; // binary number
Vec8fb b ; // boolean vec to r
b . load_bits (a) ;
// b = (f a l s e , true , f a l s e , f a l s e , f a l s e , f a l s e , true , t rue)
// The order i s not reversed , but in the comments above ,
// the vec to r e lements are l i s t e d in l i t t l e endian order ,
// whi l e the binary number i s wr i t t en in big endian order .

Method conversion between boolean vectors of same size and element size
Defined for Vec4ib ↔ Vec4fb

Vec8ib ↔ Vec8fb
Vec16ib ↔ Vec16fb
Vec2qb ↔ Vec2db
Vec4qb ↔ Vec4db
Vec8qb ↔ Vec8db

Description Boolean vectors for use with different types of vectors with the same bit
size can be converted to each other.

Efficiency good

// Example :
Vec4i a (0 , 1 , 2 , 3) ;
Vec4i b (4 , 3 , 2 , 1) ;
Vec4ib f = a > b ; // f = (f a l s e , f a l s e , f a l s e , t rue)
Vec4fb g = Vec4fb (f) ; // g = (f a l s e , f a l s e , f a l s e , t rue)

42

Method conversion from boolean vectors to integer vectors of the same size and
element size

Defined for broad boolean vectors only.
Description broad boolean vectors can be converted to integer vectors of the same

size and bit size. The result will be -1 for true and 0 for false.
Avoid this method if compact boolean vectors may be used.
Conversion the other way, e.g. from Vec4i to Vec4ib is possible for broad
boolean vectors if the input vector contains -1 for true and 0 for false,
but the result is implementation dependent and possibly wrong and in-
consistent if the input vector contains any other values than 0 and -1.
To prevent errors, it is recommended to use a comparison instead for
converting an integer vector to a boolean vector.

Efficiency good

// This example works only f o r broad boolean ve c t o r s
Vec4i a (0 , 1 , 2 , 3) ;
Vec4i b (4 , 3 , 2 , 1) ;
Vec4ib f = a > b ; // f = (f a l s e , f a l s e , f a l s e , t rue)
Vec4i g = Vec4i (f) ; // g = (0 , 0 , 0 , -1)

43

Chapter 7

Permute, blend, lookup, gather and
scatter functions

7.1 Permute functions

Function permute..<i0, i1, ...>(vector)
Defined for all integer and floating point vector classes
Description permutes vector elements
Efficiency depends on parameters and instruction set

The permute functions can move any element of a vector into any position, copy the same element to
multiple positions, and set any element to zero.

The name of the permute function is ”permute” followed by the number of vector elements, for
example permute4 for Vec4i. The permute function for a vector of n elements has n indexes, which
are entered as template parameters in angle brackets. Each index indicates the desired contents of the
corresponding element in the result vector. An index i in the interval 0 ≤ i ≤ n− 1 indicates that
element number i from the input vector should be placed in the corresponding position in the result
vector. An index i = −1 gives a zero in the corresponding position. An index i = V_DC means don’t
care. This will give whatever implementation is fastest, regardless of what value it puts in this
position. The value you get with ”don’t care” may be different for different implementations or
different instruction sets.

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b = permute4 <2 ,2 ,3 ,0>(a) ; // b = (12 , 12 , 13 , 10)
Vec4i c = permute4 < -1 , -1 ,1 ,1 >(a) ; // c = (0 , 0 , 11 , 11)

The indexes in angle brackets must be compile-time constants, they cannot contain variables or
function calls. If you need variable indexes then use the lookup functions instead (see page 46).

The permute functions are using advanced metaprogramming techniques in order to find the optimal
combination of instructions that fit the given set of indexes and the specified instruction set. The
optimization criteria include number of instructions, instruction latency, and data cache use. The
metaprogramming may produce extra code when compiling in debug mode, but this extra code is
eliminated when compiling for release mode with optimization on. The call to a permute function is
reduced to just one or a few machine instructions in favorable cases.

The performance is generally good when the instruction set SSSE3 or higher is enabled. The
performance for permuting vectors of 16-bit integers is medium, and the performance for permuting
vectors of 8-bit integers is poor for instruction sets lower than SSSE3. You may get the best
performance with instruction set AVX2 or AVX512VL.

44

7.2 Blend functions

Function blend..<i0, i1, ...>(vector, vector)
Defined for all integer and floating point vector classes
Description permutes and blends elements from two vectors
Efficiency depends on parameters and instruction set

The blend functions are similar to the permute functions, but with two input vectors. The name of
the function is ”blend” followed by the number of vector elements, for example blend4 for Vec4i. The
blend function for a vector of n elements has n indexes, which are entered as template parameters in
angle brackets. Each index indicates the desired contents of the corresponding element in the result
vector. The indexes must be compile-time constants. An index i in the interval 0 ≤ i ≤ n− 1
indicates that element number i from the first input vector should be placed in the corresponding
position in the result vector. An index i in the interval n ≤ i ≤ 2 · n− 1 indicates that element
number i− n from the second input vector should be placed in the corresponding position in the
result vector. An index i = −1 gives a zero in the corresponding position. An index i = V_DC means
don’t care.

The blend functions are using metaprogramming in the same way as the permute functions. The
performance is similar to the permute functions, or slightly lower.

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c = blend4 <4 ,0 ,6 ,3>(a , b) ; // c = (20 , 10 , 22 , 13)

There are different methods you can use if you want to blend inputs from more than two vectors:

1. A binary tree of blend calls, where unused values are set to V_DC meaning don’t care.

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c (30 , 31 , 32 , 33) ;
Vec4i d (40 , 41 , 42 , 43) ;
Vec4i r = blend4 <0 ,5 ,V_DC,V_DC>(a , b) ; // r = (10 , 21 , ? , ?)
Vec4i s = blend4<V_DC,V_DC,2 ,7 >(c , d) ; // s = (? , ? , 32 , 43)
Vec4i t = blend4 <0 ,1 ,6 ,7>(r , s) ; // t = (10 ,21 ,32 ,43)

2. Set unused values to zero, then OR the results.

// Example :
Vec4i a (10 , 11 , 12 , 13) ;
Vec4i b (20 , 21 , 22 , 23) ;
Vec4i c (30 , 31 , 32 , 33) ;
Vec4i d (40 , 41 , 42 , 43) ;
Vec4i r = blend4 <0 ,5 , -1 , -1 >(a , b) ; // r = (10 ,21 , 0 , 0)
Vec4i s = blend4 < -1 , -1 ,2 ,7 >(c , d) ; // s = (0 ,0 , 32 , 43)
Vec4i t = r | s ; // t = (10 ,21 ,32 ,43)

3. If the input vectors are stored sequentially in memory then use the lookup functions shown below.

45

7.3 Lookup functions

Function Vec16c lookup16(Vec16c, Vec16c)
Vec32c lookup32(Vec32c, Vec32c)
Vec64c lookup64(Vec64c, Vec64c)
Vec8s lookup8(Vec8s, Vec8s)
Vec16s lookup16(Vec16s, Vec16s)
Vec32s lookup32(Vec32s, Vec32s)
Vec4i lookup4(Vec4i, Vec4i)
Vec8i lookup8(Vec8i, Vec8i)
Vec16i lookup16(Vec16i, Vec16i)
Vec4q lookup4(Vec4q, Vec4q)
Vec8q lookup8(Vec8q, Vec8q)

Defined for Vec16c, Vec32c, Vec64c, Vec8s, Vec16s, Vec32s, Vec4i, Vec8i, Vec16i,
Vec4q, Vec8q

Description Permutation with variable indexes. The first input vector contains the
indexes, the second input vector is the data source. Each index must be
in the range 0 ≤ i ≤ n− 1 where n is the number of elements in a vector.

Efficiency Vec16i, Vec8q: Good for AVX512F, medium otherwise.
Vec64c, Vec32s: Good for AVX512VBMI, medium for AVX512BW, poor
otherwise.
Vec32c, Vec16s, Vec8i, Vec4i, Vec4q: Good for AVX2, medium otherwise.
Vec16c, Vec8s: Good for SSSE3, poor otherwise.

Function Vec16c lookup32(Vec16c, Vec16c, Vec16c)
Vec64c lookup128(Vec64c, Vec64c, Vec64c)
Vec8s lookup16(Vec8s, Vec8s, Vec8s)
Vec32s lookup64(Vec32s, Vec32s, Vec32s)
Vec4i lookup8(Vec4i, Vec4i, Vec4i)
Vec16i lookup32(Vec16i, Vec16i, Vec16i)

Defined for Vec16c, Vec64c, Vec8s, Vec32s, Vec4i, Vec16i
Description Blend with variable indexes. The first input vector contains the indexes,

the following two input vectors contain the data source. Each index must
be in the range 0 ≤ i ≤ 2 · n − 1 where n is the number of elements in
each vector.

Efficiency Vec4i, Vec8s: Good for AVX2, medium or poor otherwise.
Vec16i: Good for AVX512, medium or poor otherwise.
Vec64c, Vec32s: Good for AVX512VBMI, medium for AVX512BW, poor
otherwise.
Vec16c, Vec8s: Good for SSSE3, poor otherwise.

46

Function Vec4i lookup16(Vec4i, Vec4i, Vec4i, Vec4i, Vec4i)
Vec16i lookup64(Vec16i, Vec16i, Vec16i, Vec16i, Vec16i)
Vec64c lookup256(Vec64c, Vec64c, Vec64c, Vec64c, Vec64c)
Vec32s lookup128(Vec32s, Vec32s, Vec32s, Vec32s, Vec32s)

Defined for Vec4i, Vec32s, Vec64c
Description Blend with variable indexes. The first input vector contains the indexes,

the following four input vectors contain the data source. Each index must
be in the range 0 ≤ i ≤ 4 · n − 1 where n is the number of elements in
each vector.

Efficiency Vec4i: Good for AVX2, medium otherwise.
Vec16i: Good for AVX512, medium or poor otherwise.
Vec64c, Vec32s: Good for AVX512VBMI, medium for AVX512BW, poor
otherwise.

Function Vec8h lookup8(Vec8s, Vec8h)
Vec16h lookup16(Vec16s, Vec16h)
Vec32h lookup32(Vec32s, Vec32h)
Vec4f lookup4(Vec4i, Vec4f)
Vec8f lookup8(Vec8i, Vec8f)
Vec16f lookup16(Vec16i, Vec16f)
Vec2d lookup2(Vec2q, Vec2d)
Vec4d lookup4(Vec4q, Vec4d)
Vec8d lookup8(Vec8q, Vec8d)

Defined for all floating point vector classes
Description Permutation of floating point vectors with integer indexes. Each index

must be in the range 0 ≤ i ≤ n − 1 where n is the number of elements in
a vector.

Efficiency good for AVX2 and later, medium for lower instruction sets

Function Vec8h lookup16(Vec8s, Vec8h, Vec8h)
Vec4f lookup8(Vec4i, Vec4f, Vec4f)
Vec2d lookup4(Vec2q, Vec2d, Vec2d)

Defined for Vec4f, Vec2d
Description Blend of floating point vectors with integer indexes. Each index must be

in the range 0 ≤ i ≤ 2 ∗ n − 1 where n is the number of elements in a
vector.

Efficiency medium

47

Function Vec16c lookup<n>(Vec16c index, void const * table)
Vec32c lookup<n>(Vec32c index, void const * table)
Vec8s lookup<n>(Vec8s index, void const * table)
Vec16s lookup<n>(Vec16s index, void const * table)
Vec4i lookup<n>(Vec4i index, void const * table)
Vec8i lookup<n>(Vec8i index, void const * table)
Vec16i lookup<n>(Vec16i index, void const * table)
Vec4q lookup<n>(Vec4q index, void const * table)
Vec8q lookup<n>(Vec8q index, void const * table)
Vec8h lookup<n>(Vec8s index, void const * table)
Vec16h lookup<n>(Vec16s index, void const * table)
Vec32h lookup<n>(Vec32s index, void const * table)
Vec4f lookup<n>(Vec4i index, float const * table)
Vec8f lookup<n>(Vec8i const & index, float const * table)
Vec16f lookup<n>(Vec16i const & index, float const * table)
Vec2d lookup<n>(Vec2q index, double const * table)
Vec4d lookup<n>(Vec4q const & i, double const * table)
Vec8d lookup<n>(Vec8q const & i, double const * table)

Defined for all floating point and signed integer vector classes
Description Permute, blend, table lookup or gather data from array with an integer

vector of indexes.
Each index must be in the range 0 ≤ i ≤ n − 1, where n is indicated as a
template parameter. n must be a positive compile-time constant.

Efficiency good for AVX2 and later, medium for lower instruction sets

The lookup functions are similar to the permute and blend functions, but with variable indexes. They
cannot be used for setting an element to zero, and there is no ”don’t care” option. The lookup
functions can be used for several purposes:

1. permute with variable indexes

2. blend with variable indexes

3. blend from more than two sources

4. table lookup

5. gather non-contiguous data from an array

The index is always an integer vector. The input can be one or more vectors or an array. The result is
a vector of the same type as the input. All elements in the index vector must be in the specified
range. The behavior for an index out of range is implementation-dependent and may give any value
for the corresponding element. The function may in some cases read up to one vector size past the
end of the table for the sake of efficient permutation.

The lookup functions are not defined for unsigned integer vector types, but the corresponding signed
versions can be used. You don’t have to worry about overflow when converting unsigned integers to
signed here, as long as the result vector is converted back to unsigned.

// Example o f permutation with va r i ab l e indexes :
Vec4f a (1 . 0 , 1 . 1 , 1 . 2 , 1 . 3) ;
Vec4i b (2 , 3 , 3 , 0) ;
Vec4f c = lookup4 (b , a) ; // c = (1 . 2 , 1 . 3 , 1 . 3 , 1 . 0)

48

// Example o f b lending with va r i ab l e indexes :
Vec4f a (1 . 0 , 1 . 1 , 1 . 2 , 1 . 3) ;
Vec4f b (2 . 0 , 2 . 1 , 2 . 2 , 2 . 3) ;
Vec4i c (4 , 3 , 2 , 7) ;
Vec4f d = lookup4 (c , a , b) ; // d = (2 . 0 , 1 . 3 , 1 . 2 , 2 . 3)

// Example o f b lending from more than two source s :
f l o a t sour c e s [1 2] = {
1 . 0 , 1 . 1 , 1 . 2 , 1 . 3 , 2 . 0 , 2 . 1 , 2 . 2 , 2 . 3 , 3 . 0 , 3 . 1 , 3 . 2 , 3 . 3 } ;
Vec4i i (11 , 0 , 5 , 5) ;
Vec4f c = lookup<12>(i , s ou r c e s) ; // c = (3 . 3 , 1 . 0 , 2 . 1 , 2 . 1)

A function with a limited number of possible input values can be replaced by a lookup table. This is
useful if table lookup is faster than calculating the function. The following example has a table of the
function y = x2 − 1

// Table o f the func t i on y = x*x -1
i n t t ab l e [6] = { -1 , 0 , 3 , 8 , 15 , 24} ;
Vec4i x (4 , 2 , 0 , 5) ;
Vec4i y = lookup<6>(x , t ab l e) ; // y = (15 , 3 , -1 , 24)

// Example o f gather ing non - cont iguous data from an array :
f l o a t x [1 6] = { . . . } ;
Vec4i i (0 , 4 , 8 , 12) ;
Vec4f y = lookup<16>(i , x) ; // y = (x [0] , x [4] , x [8] , x [1 2])

7.4 Gather functions

Function Vec4i gather4i<indexes>(void const * table)
Vec8i gather8i<indexes>(void const * table)
Vec16i gather16i<indexes>(void const * table)
Vec2q gather2q<indexes>(void const * table)
Vec4q gather4q<indexes>(void const * table)
Vec8q gather8q<indexes>(void const * table)
Vec4f gather4f<indexes>(void const * table)
Vec8f gather8f<indexes>(void const * table)
Vec16f gather16f<indexes>(void const * table)
Vec2d gather2d<indexes>(void const * table)
Vec4d gather4d<indexes>(void const * table)
Vec8d gather8d<indexes>(void const * table)

Defined for Vec4i, Vec8i, Vec16i, Vec2q, Vec4q, Vec8q,
Vec4f, Vec8f, Vec16f, Vec2d, Vec4d, Vec8d

Description Load non-contiguous data from a table. Indexes cannot be negative.
There is no option for zeroing or don’t care.
If you need variable indexes, then use the lookup functions instead.
The function may read a full vector and permute it if all indexes are
smaller than the vector size.

Efficiency medium

// Example :
i n t tab [8] = {10 ,11 ,12 ,13 ,14 ,15 ,16 ,17} ;
Vec4i a = gather4 i <6 ,4 ,4 ,0>(tab) ;

49

// a = (16 , 14 , 14 , 10) ;

7.5 Scatter functions
Function scatter<indexes>(Vec4i data, void * array)

scatter<indexes>(Vec8i data, void * array)
scatter<indexes>(Vec16i data, void * array)
scatter<indexes>(Vec2q data, void * array)
scatter<indexes>(Vec4q data, void * array)
scatter<indexes>(Vec8q data, void * array)
scatter<indexes>(Vec4f data, float * array)
scatter<indexes>(Vec8f data, float * array)
scatter<indexes>(Vec16f data, float * array)
scatter<indexes>(Vec2d data, double * array)
scatter<indexes>(Vec4d data, double * array)
scatter<indexes>(Vec8d data, double * array)

Defined for Vec4i, Vec8i, Vec16i, Vec2q, Vec4q, Vec8q,
Vec4f, Vec8f, Vec16f, Vec2d, Vec4d, Vec8d

Description Store vector elements into non-contiguous positions in an array. Each vec-
tor element is stored in the array position indicated by the corresponding
index. An element is not stored if the corresponding index is negative.

Efficiency Medium for 512 bit vectors if AVX512F instruction set supported.
Medium for 256 bit vectors if AVX512F, or better AVX512VL, supported.
Medium for 128 bit vectors if AVX512VL supported.
Poor otherwise.

// Example :
Vec8i a (10 ,11 ,12 ,13 ,14 ,15 ,16 ,17) ;
i n t array [1 0] = {0} ;
s c a t t e r <5 ,4 ,3 ,2 , -1 , -1 ,7 ,0 >(a , array) ;
// array = (17 ,0 , 13 , 12 , 11 , 10 , 0 , 16 , 0 , 0)

50

Function scatter(Vec4i index, uint32_t limit, Vec4i data, void * array)
scatter(Vec8i index, uint32_t limit, Vec8i data, void * array)
scatter(Vec16i index, uint32_t limit, Vec16i data, void * array)
scatter(Vec2q index, uint32_t limit, Vec2q data, void * array)
scatter(Vec4i index, uint32_t limit, Vec4q data, void * array)
scatter(Vec4q index, uint32_t limit, Vec4q data, void * array)
scatter(Vec8i index, uint32_t limit, Vec8q data, void * array)
scatter(Vec8q index, uint32_t limit, Vec8q data, void * array)
scatter(Vec4i index, uint32_t limit, Vec4f data, float * array)
scatter(Vec8i index, uint32_t limit, Vec8f data, float * array)
scatter(Vec16i index, uint32_t limit, Vec16f data, float * array)
scatter(Vec2q index, uint32_t limit, Vec2d data, double * array)
scatter(Vec4i index, uint32_t limit, Vec4d data, double * array)
scatter(Vec4q index, uint32_t limit, Vec4d data, double * array)
scatter(Vec8i index, uint32_t limit, Vec8d data, double * array)
scatter(Vec8q index, uint32_t limit, Vec8d data, double * array)

Defined for Vec4i, Vec8i, Vec16i, Vec2q, Vec4q, Vec8q,
Vec4f, Vec8f, Vec16f, Vec2d, Vec4d, Vec8d

Description Store vector elements into non-contiguous positions in an array. Each vec-
tor element is stored in the array position indicated by the corresponding
element of the index vector. An element is not stored if the correspond-
ing index is negative or bigger than or equal to the limit. The limit will
typically be the size of the array.

Efficiency Medium for 512 bit vectors if AVX512F instruction set supported.
Medium for 256 bit vectors if AVX512F, or better AVX512VL, supported.
Medium for 128 bit vectors if AVX512VL supported.
Poor otherwise.

// Example :
Vec8i a (10 ,11 ,12 ,13 ,14 ,15 ,16 ,17) ;
Vec8i x (5 , 4 , 3 , 2 , - 1 , 99 , 7 , 0) ;
i n t array [1 0] = {0} ;
s c a t t e r (x , 5 , a , array) ;
// array = (17 , 0 , 13 , 12 , 11 , 0 , 0 , 0 , 0 , 0)

The scatter functions are useful for writing sparse arrays. If you have more dense arrays, then it may
be more efficient to permute the vector and then store the whole vector into the array.

If you want to permute a dataset that is too big for the permute and blend functions, then it is better
to use lookup or gather functions than to use scatter functions.

51

Chapter 8

Mathematical functions

Function exponent
Defined for all floating point vector classes
Description extracts the exponent part of a floating point number. The

result is an integer vector.
exponent(a) = floor(log2(abs(a))).
The value for a = 0 is implementation dependent.
Subnormal numbers are not supported.

Efficiency medium

// Example :
Vec4f a (1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f) ;
Vec4i b = exponent (a) ; // b = (0 , 1 , 1 , 2)

Function fraction
Defined for all floating point vector classes
Description extracts the fraction part of a floating point number.

a = pow(2, exponent(a)) * fraction(a)
The results for a = 0, subnormal, INF, or NAN are implemen-
tation dependent.

Efficiency medium

// Example :
Vec4f a (2 . 0 f , 3 . 0 f , 4 . 0 f , 5 . 0 f) ;
Vec4f b = f r a c t i o n (a) ; // b = (1 . 00 f , 1 .50 f , 1 .00 f , 1 .25 f)

Function exp2
Defined for all floating point vector classes
Description calculates integer powers of 2. The input is an integer vec-

tor, the output is a floating point vector. Overflow gives
+INF, underflow gives zero. This function will never produce
subnormals, and never raise exceptions

Efficiency medium

// Example :
Vec4i a (-1 , 0 , 1 , 2) ;
Vec4f b = exp2 (a) ; // b = (0 . 5 f , 1 . 0 f , 2 . 0 f , 4 . 0 f)

52

Function mul_add
nmul_add
mul_sub

Defined for all floating point vector classes
Description mul_add(a,b,c) = a*b+c

nmul_add(a,b,c) = -a*b+c
mul_sub(a,b,c) = a*b-c
These functions use fused multiply-and-add (FMA) instruc-
tions if available. Some compilers use FMA instructions
automatically for expressions like a*b+c. Use these func-
tions for optimal performance on all compilers or to specify
calculation order, etc.

Precision The intermediate product a*b is calculated with unlimited
precision if the FMA instruction set is enabled.

Efficiency good

Function fremainder
fmodulo

Defined for single and double precision floating point vectors
Description vector fremainder(vector n, double d)

vector fmodulo(vector n, double d)
n (numerator) is reduced modulo d (denominator).
The same denominator is applied to all vector elements.
The result is within the following limits:
fremainder: -d/2 <= result < d/2
fmodulo: 0 <= result < d
Note that fmodulo never gives a negative result even if n is
negative, unlike the standard fmod function.

Precision d is double precision, even if n is single precision. The full
double precision of d is utilized. It is recommended to calcu-
late d with double precision, even if n is single precision.
Precision and efficiency is best if the FMA instruction set is
enabled.

Efficiency medium

8.1 Floating point categorization functions

Function is_finite
Defined for all floating point vector classes
Description returns a boolean vector with true for elements that are

normal, subnormal or zero, false for INF and NAN
Efficiency medium

// Example :
Vec4f a (0 .0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f b (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4f c = a / b ;
Vec4fb d = i s_ f i n i t e (c) ; // d = (true , f a l s e , true , t rue)

53

Function is_inf
Defined for all floating point vector classes
Description returns a boolean vector with true for elements that are

+INF or -INF, false for all other values, including NAN
Efficiency good

// Example :
Vec4f a (0 .0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f b (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4f c = a / b ;
Vec4fb d = i s_ in f (c) ; // d = (f a l s e , true , f a l s e , f a l s e)

Function is_nan
Defined for all floating point vector classes
Description returns a boolean vector with true for all types of NAN, false

for all other values, including INF
Efficiency good

// Example :
Vec4f a (- 1 . 0 f , 0 . 0 f , 1 . 0 f , 2 . 0 f) ;
Vec4f b = sq r t (a) ;
Vec4fb c = is_nan (b) ; // c = (true , f a l s e , f a l s e , f a l s e)

Function is_subnormal
Defined for all floating point vector classes
Description returns a boolean vector with true for subnormal (denormal)

vector elements, false for normal numbers, INF and NAN
Efficiency medium

// Example :
Vec4f a (1 . 0 f , 1 . 0E-10 f , 1 . 0E-20 f , 1 . 0E-30 f) ;
Vec4f b = a * a ; // b = (1 . 0 f , 1 .E-20 f , 1 .E-40 f , 0 . f)
Vec4fb c = is_subnormal (b) ; // c = (f a l s e , f a l s e , true , f a l s e)

Function is_zero_or_subnormal
Defined for all floating point vector classes
Description returns a boolean vector with true for zero and subnormal

(denormal) vector elements, false for nonzero normal num-
bers, INF and NAN

Efficiency good

// Example :
Vec4f a (1 . 0 f , 1 . 0E-10 f , 1 . 0E-20 f , 1 . 0E-30 f) ;
Vec4f b = a * a ; // b = (1 . 0 f , 1 .E-20 f , 1 .E-40 f , 0 . f)
Vec4fb c = is_zero_or_subnormal (b) ; // c = (f a l s e , f a l s e , true , t rue)

Function infinite8h, infinite16h, infinite32h,
infinite4f, infinite8f, infinite16f,
infinite2d, infinite4d, infinite8d

Defined for all floating point vector classes
Description returns positive infinity
Efficiency good

// Example :
Vec4f a = i n f i n i t e 4 f () ; // a = (INF , INF , INF , INF)

54

Function nan8h(unsigned int n)
nan16h(unsigned int n)
nan32h(unsigned int n)
nan4f(unsigned int n)
nan8f(unsigned int n)
nan16f(unsigned int n)
nan2d(unsigned int n)
nan4d(unsigned int n)
nan8d(unsigned int n)

Defined for all floating point vector classes
Description returns not-a-number (NAN).

The optional parameter n may be used for error tracing.
The maximum value of n is 0x003FFFFF for single and dou-
ble precision, and 0x1FF for half precision.
This function generates a quiet NAN in the following way:
Half precision: The value n is OR’ed with 0x200 to set the
quiet bit, and inserted as a payload.
Single precision: The value n is OR’ed with 0x400000 to set
the quiet bit, and inserted as a payload.
Double precision: The value n is shifted 29 places to the left
for the sake of compatibility with single precision. The value
is then OR’ed with 1 << 51 to set the quiet bit.
This parameter n (including the quiet bit) can be retrieved
later by the function nan_code (page 66).

Efficiency good

// Example :
Vec4f a = nan4f () ; // a = (NAN, NAN, NAN, NAN)

8.2 Floating point control word manipulation functions
MXCSR is a control word that controls floating point exceptions, rounding mode and subnormal
numbers for single and double precision floating point numbers. There is one MXCSR for each thread.
The MXCSR has the following bits:

55

Bit index meaning
0 Invalid Operation Flag
1 Denormal (subnormal) Flag
2 Divide-by-Zero Flag
3 Overflow Flag
4 Underflow Flag
5 Precision Flag
6 Denormals (subnormals) Are Zeros
7 Invalid Operation Mask
8 Denormal (subnormal) Operation Mask
9 Divide-by-Zero Mask
10 Overflow Mask
11 Underflow Mask
12 Precision Mask
13-14 Rounding control:

00: round to nearest or even
01: round down towards -infinity
10: round up towards +infinity
11: round towards zero (truncate)
If the rounding mode is temporarily changed then it must be
set back to 00 for the vector class library to work correctly.

15 Flush to Zero

Please see programming manuals from Intel or AMD for further explanation.

Function get_control_word
Description reads the MXCSR control word
Efficiency medium

// Example :
i n t m = get_control_word () ; // d e f au l t va lue m = 0x1F80

Function set_control_word(n)
Description writes the MXCSR control word
Efficiency medium

// Example :
// Enable over f l ow and d iv id e by zero except i ons :
set_control_word (0 x1980) ;

Function reset_control_word
Description sets the MXCSR control word to the default value
Efficiency medium

// Example :
reset_control_word () ;

56

Function no_subnormals
Description Disables the use of subnormal (denormal) values.

Floating point numbers with an absolute value below
1.18E-38 for single precision or 2.22E-308 for double preci-
sion are represented by subnormal numbers. The handling
of subnormal numbers is extremely time-consuming on many
CPUs. The no_subnormals function sets the ”denormals are
zeros” and ”flush to zero” mode to avoid the use of subnor-
mal numbers. It is recommended to call this function at the
beginning of each thread in order to improve the speed of
mathematical calculations if very low numbers are likely to
occur. This function has no effect on half precision numbers.

Efficiency medium

// Example :
no_subnormals () ;

8.3 Standard mathematical functions
Standard mathematical functions such as logarithms, exponential functions, power, trigonometric
functions, etc. for vectors are available in two versions: as inline code and as an external function
library provided by Intel. These functions all take vectors as input and produce vectors as output.

The use of vector math functions is straightforward:

Example 8.1.

#inc lude <s td i o . h>
#inc lude ” v e c t o r c l a s s . h”
#inc lude ” vectormath_trig . h” // t r i gonomet r i c f unc t i on s

i n t main () {
Vec4f a (0 . 0 f , 0 . 5 f , 1 . 0 f , 1 . 5 f) ; // d e f i n e vec to r
Vec4f b = s i n (a) ; // s i n e func t i on
// b = (0 .0000 f , 0 .4794 f , 0 .8415 f , 0 .9975 f)

// output r e s u l t s :
f o r (i n t i = 0 ; i < b . s i z e () ; i++) {

p r i n t f (”%6.4 f ” , b [i]) ;
}
p r i n t f (”\n”) ;
r e turn 0 ;

}

The inline versions and the external library versions are using different calculation methods. The inline
versions may be faster in some cases, while the external library versions may be faster in other cases.
Both versions are many times faster than standard (scalar) math function libraries.

The available vector math functions are listed below. The efficiency is listed as poor because
mathematical functions take more time to execute than most other functions, but they are still much
faster than scalar alternatives. The details listed apply to the inline version. Details for the library
version may be sought in the documentation for the Intel compiler.

57

8.4 Inline mathematical functions
The inline mathematical functions are available by including the appropriate header file, e. g.
vectormath_exp.h for powers, logarithms and exponential functions, and vectormath_trig.h for
trigonometric functions. An advantage of the inline version is that the compiler can optimize the code
across function calls, eliminate common sub-expressions, etc. The disadvantage is that you may get
multiple instances of the same function taking up space in the code cache.

The accuracy is good. The calculation error is typically below 2 ULP (Unit in the Last Place = least
significant bit) on the output. (The relative value of one ULP is 2−52 for double precision and 2−23

for single precision). Where a function is steep, the maximum error corresponds to 1 ULP at the
input. Cases where the error can exceed 3 ULP are mentioned under the specific function.

The functions do not generate exceptions or set errno when an input is out of range. This would be
inefficient and it would be problematic for the error handler to detect which vector element caused
the error. Instead, the functions return INF (infinity) or NAN (not a number) in case of error.
Generally, an overflow will produce INF. A negative overflow produces -INF. An underflow towards
zero returns 0. Other errors produce NAN. An efficient way of detecting errors is to let the INF and
NAN codes propagate through the calculations and detect the error at the end of a series of
calculations as explained on page 88. It is possible to include an error code in a NAN and detect it
with the function nan_code on page 66.

Note that many of the inline math functions do not support subnormal numbers. Subnormal numbers
may be treated as zero by the logarithm, exponential, power, and root functions. It is recommended
to set the “denormals are zero” and “flush to zero” flags by calling the function no_subnormals()
first (see page 56). This may speed up some calculations and give more consistent results.

A description of each mathematical function is given below.

8.5 Using an external library for mathematical functions
A function library made by Intel called SVML (Short Vector Math Library) can be used as an
alternative to the inline mathematical functions. SVML is a highly optimized function library that
calculates mathematical functions on vectors.

The SVML library is part of an Intel compiler installation. The vector class library provides a header
file named vectormath_lib.h that makes it possible to use the Intel SVML library with other
compilers. The SVML library is optimized for Intel processors, but it works well with AMD processors
as well according to my tests, unless you are using the Intel ICC or ICL compiler (named ”classic”).
Use the newer Intel ICPX compiler instead, or any other compiler. The SVML library is available for
all platforms relevant to the vector class library.

The SVML library for Windows can be obtained in the following way:
Install the Intel C++ compiler. You need the files named svml_dispmt.lib and libircmt.lib. These files
can be found in the installation directory, for example:
C:\Program Files (x86)\Intel\oneAPI\compiler\2022.1.0\windows\compiler\lib\intel64_win

Note that there is a 32-bit version and a 64-bit version of each library. We generally prefer to compile
vector code for 64-bit mode, so you will probably need the 64-bit versions only. You also need the
library file svmlpatch.lib which you can find at the VCL Github site under miscellaneous.

svml_dispmt.lib contains the mathematical vector functions. libircmt.lib contains a function
dispatcher used by svml_dispmt.lib. The purpose of svmlpatch.lib is to fix a non-standard calling
convention in the SVML library. svmlpatch.lib is only needed in 64-bit mode Windows.

Copy the library files svml_dispmt.lib, svml_dispmt.lib, and svmlpatch.lib to a suitable location and

58

https://github.com/vectorclass/miscellaneous/tree/master/svmlpatch

add them to your C++ project.

The SVML library for Linux can be obtained in the following way:
Install the Intel C++ compiler. You need the files named libsvml.a and libirc.a. These files can be
found in the installation directory, for example:
∼/intel/oneapi/compiler/2022.1.0/linux/compiler/lib/intel64_lin/

Note that there is a 32-bit version and a 64-bit version of each library. We generally prefer to compile
vector code for 64-bit mode, so you will probably need the 64-bit version only.

libsvml.a contains the mathematical vector functions, and libircmt.a contains a function dispatcher
used by libsvml.a. Copy these two library files to a suitable location and add them to your C++
project.

Using the library functions in vector code:
Include the header file vectormath_lib.h if you want to use the SVML library. Do not include
vectormath_exp.h, vectormath_trig.h, or vectormath_hyp.h. It is not possible to mix the two kinds of
mathematical functions (inline and library) in the same C++ file. The available vector math functions
are listed below.

8.6 Powers, exponential functions and logarithms

Function pow(vector, vector), pow(vector, scalar)
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description pow(a,b) = ab

See also faster alternatives below for integer and rational powers.
Range Subnormal numbers are treated as zero. The result is NAN if a is nega-

tive and b is not an integer. NAN’s are always propagated by the inline
version of pow, even in cases where the IEEE 754 standard specifies
otherwise. The library version may fail to propagate NANs in the cases
pow(NAN,0) and pow(1,NAN).

Precision better than (0.8*abs(b)+2) ULP
Efficiency poor

// Example :
Vec4f a (1 .0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f) ;
Vec4f b(0 .0 f , - 1 . 0 f , 0 . 5 f , 2 . 0 f) ;
Vec4f c = pow(a , b) ;
// c = (1 . 0000 , 0 .5000 , 1 .7321 , 16 .0000)
Vec4f d = pow(a , 2 . 4 f) ;
// d = (1 . 0000 , 5 .2780 , 13 .9666 , 27 .8576)

Function pow(vector, int)
Defined for all floating point vector classes
Inline version no extra header file required
Library version not available
Description see page 28
Efficiency medium

// Example :
Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
i n t b = 3 ;

59

Vec4f c = pow(a , b) ; // c = (0 . 0 f , 1 . 0 f , 8 . 0 f , 27 .0 f)

Function pow_const(vector, const int)
Defined for all floating point vector classes
Inline version no extra header file required
Library version not available
Description see page 28
Efficiency medium, often better than pow(vector, int)

// Example :
Vec4f a (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f) ;
Vec4f c = pow_const (a , 3) ; // c = (0 . 0 f , 1 . 0 f , 8 . 0 f , 27 .0 f)

Function pow_ratio(vector x, const int a, const int b)
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version not available
Description Raises all elements of x to the rational power a/b.

a and b must be compile-time constant integers.
Range x may be zero only if a and b are positive. x may be negative only if b is

odd.
The range is the same as for cbrt (page 62) if b is 3. The result when x
is infinite may be NAN in some cases. Subnormal numbers are treated as
zero in some cases.

Precision slightly imprecise for extreme values of a due to accumulating rounding
errors. The precision is similar to the cbrt function when b is 3 or 6.

Efficiency Quite good for b = 1, 2, 4, or 8. Reasonable for b = 3 or 6. No better
than pow for other values of b.

// Example :
Vec4f a (1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f) ;
// Rec ip roca l square root
Vec4f b = pow_ratio (a , -1 , 2) ; // c = (1 . 0 , 0 . 707 , 0 . 577 , 0 . 500)

Function exp
Defined for all floating point vector classes
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description exponential function ex

Range double: abs(x) <708.39. float: abs(x) <87.3
Efficiency Poor. The performance of the inline version for single precision vectors

(Vec16f etc.) is better when the instruction set AVX512ER is supported.
The performance can be improved further, at a slight loss of precision,
when VCL_FASTEXP is defined in addition to AVX512ER.

// Example :
#inc lude ”vectormath_exp . h”
Vec16f a , b ;
b = exp (a) ;

60

Function expm1
Defined for all floating point vector classes
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description ex − 1. Useful to avoid loss of precision if x is close to 0
Range double: abs(x) < 708.39. float: abs(x) < 87.3
Efficiency Poor. (not improved with AVX512ER)

Function exp2
Defined for all floating point vector classes
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description 2x

Range double: abs(x) < 1020. float: abs(x) < 27.
Efficiency The performance of the inline version is good for single precision vectors if

instruction set AVX512ER is supported. (VCL_FASTEXP is not needed).
Use pow or pow_const instead if x is an integer.

Function exp10
Defined for all floating point vector classes
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description 10x

Range double: abs(x) < 307.65. float: abs(x) < 37.9.
Efficiency Poor. The performance of the inline version for single precision vectors

(Vec16f etc.) is better when the instruction set AVX512ER is supported.
The performance can be improved further, at a slight loss of precision,
when VCL_FASTEXP is defined in addition to AVX512ER.
Use pow or pow_const instead if x is an integer.

// Example :
#inc lude ”vectormath_exp . h”
Vec16f a , b ;
b = exp10 (a) ;

Function log
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description natural logarithm
Range The input must be a normal number. Subnormal numbers are treated as

zero.
Efficiency poor

Function log1p
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description log(1+x)

Useful to avoid loss of precision if x is close to 0
Range x > -1
Efficiency poor

61

Function log2
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description logarithm base 2
Range The input must be a normal number. Subnormal numbers are treated as

zero.
Efficiency poor

Function log10
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description logarithm base 10
Range The input must be a normal number. Subnormal numbers are treated as

zero.
Efficiency poor

Function cbrt
Defined for single and double precision floating point vectors
Inline version vectormath_exp.h
Library version vectormath_lib.h
Description cube root
Range float: 0, ±10−28..1028

double: 0, ±10−200..10200

The return value is 0 if abs(x) is too small
Precision 5 ULP
Efficiency Faster than pow

8.7 Trigonometric functions and inverse trigonometric functions
All angles are in radians.

Function sin
Defined for all floating point vector classes
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description sine function
Range abs(x) is limited to 314, 1.E7, 1.E15 for half, single, and double precision,

respectively. This limit is lower if FMA instructions are not supported.
The result is 0 for big x. The result may be 0 or NAN when the input is
infinity depending on the implementation.

Efficiency poor

// Example :
Vec4f a (0 . 0 f , 0 . 5 f , 1 . 0 f , 1 . 5 f) ; // d e f i n e vec to r
Vec4f b = s i n (a) ; // s i n e func t i on
// b = (0 .0000 f , 0 .4794 f , 0 .8415 f , 0 .9975 f)

62

Function cos
Defined for all floating point vector classes
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description cosine function
Range abs(x) is limited to 314, 1.E7, 1.E15 for half, single, and double precision,

respectively. This limit is lower if FMA instructions are not supported.
The result is 1 for big x. The result may be 1 or NAN when the input is
infinity depending on the implementation

Efficiency poor

Function sincos
Defined for all floating point vector classes
Inline version vectormath_trig.h
Library version vectormath_lib.h (not with MS compiler)
Description sine and cosine computed simultaneously.
Range abs(x) is limited to 314, 1.E7, 1.E15 for half, single, and double precision,

respectively. This limit is lower if FMA instructions are not supported.
The result is 0 and 1 for big x. The result may or may not be NAN when
the input is infinity.

Efficiency faster than computing sin and cos separately

// Example :
Vec4f a (0 . 0 f , 0 . 5 f , 1 . 0 f , 1 . 5 f) ;
Vec4f s , c ;
s = s i n c o s (&c , a) ;
// s = (0 . 0000 , 0 .4794 , 0 .8415 , 0 .9975)
// c = (1 . 0000 , 0 .8776 , 0 .5403 , 0 .0707)

Function tan
Defined for all floating point vector classes
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description tangent function
Range abs(x) is limited to 314, 1.E7, 1.E15 for half, single, and double precision,

respectively. This limit is lower if FMA instructions are not supported.
The result is 0 for big x. The result may be 0 or NAN when the input is
infinity depending on the implementation.

Efficiency poor

63

Function sinpi, cospi, sincospi, tanpi
Defined for all floating point vector classes
Inline version vectormath_trig.h
Library version vectormath_lib.h. Not with Intel compiler. sincospi not available
Description sinpi(x) = sin(pi*x), etc.

The ...pi functions are more accurate than the normal trigonometric
functions when x is a multiple or simple fraction of π or x is high. For
example, tanpi(0.5) gives INF while tan(pi*0.5) gives a high number less
than INF because π/2 cannot be represented exactly. tanpi(n+0.5) gives
INF for n even, and -INF for n odd, in accordance with the IEEE754-2019
standard. The standard for signed zero results is not necessarily followed.

Range numerically high values of x are interpreted as even integers, giving exact
results. The result may or may not be NAN when the input is infinity.

Efficiency same as normal trigonometric functions, or slightly better

Function asin
Defined for single and double precision floating point vectors
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description inverse sine function
Range -1 ≤ x ≤ 1
Efficiency poor

Function acos
Defined for single and double precision floating point vectors
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description inverse cosine function
Range -1 ≤ x ≤ 1
Efficiency poor

Function atan
Defined for single and double precision floating point vectors
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description Inverse tangent
Range Results between −π/2 and π/2

Efficiency poor

Function atan2
Defined for single and double precision floating point vectors
Inline version vectormath_trig.h
Library version vectormath_lib.h
Description Inverse tangent with two parameters, x and y, gives the angle to a point

in the (x,y) plane
Range Results between −π and π

The result of atan2(0,0) is 0 by convention
Efficiency poor

64

8.8 Hyperbolic functions and inverse hyperbolic functions

Function sinh
Defined for single and double precision floating point vectors
Inline version vectormath_hyp.h
Library version vectormath_lib.h
Description hyperbolic sine
Range double: abs(x) < 709. float: abs(x) < 88.
Efficiency poor

Function cosh
Defined for single and double precision floating point vectors
Inline version vectormath_hyp.h
Library version vectormath_lib.h
Description hyperbolic cosine
Range double: abs(x) < 709. float: abs(x) < 88.
Efficiency poor

Function tanh
Defined for single and double precision floating point vectors
Inline version vectormath_hyp.h
Library version vectormath_lib.h
Description hyperbolic tangent
Efficiency poor

Function asinh
Defined for single and double precision floating point vectors
Inline version vectormath_hyp.h
Library version vectormath_lib.h
Description inverse hyperbolic sine
Efficiency poor

Function acosh
Defined for single and double precision floating point vectors
Inline version vectormath_hyp.h
Library version vectormath_lib.h
Description inverse hyperbolic cosine
Efficiency poor

Function atanh
Defined for single and double precision floating point vectors
Inline version vectormath_hyp.h
Library version vectormath_lib.h
Description inverse hyperbolic tangent
Efficiency poor

65

8.9 Other mathematical functions

Function erf
Defined for single and double precision floating point vectors
Inline version not available
Library version vectormath_lib.h
Description error function
Efficiency poor

Function erfc
Defined for single and double precision floating point vectors
Inline version not available
Library version vectormath_lib.h
Description error function complement
Efficiency poor

Function erfinv
Defined for single and double precision floating point vectors
Inline version not available
Library version vectormath_lib.h
Description inverse error function
Efficiency poor

Function cdfnorm
Defined for single and double precision floating point vectors
Inline version not available
Library version vectormath_lib.h
Description cumulative normal distribution function
Efficiency poor

Function cdfnorminv
Defined for single and double precision floating point vectors
Inline version not available
Library version vectormath_lib.h
Description inverse cumulative normal distribution function
Efficiency poor

66

Function Vec8us nan_code(Vec8h)
Vec16us nan_code(Vec16h)
Vec32us nan_code(Vec32h)
Vec4ui nan_code(Vec4f)
Vec8ui nan_code(Vec8f)
Vec16ui nan_code(Vec16f)
Vec2uq nan_code(Vec2d)
Vec4uq nan_code(Vec4d)
Vec8uq nan_code(Vec8d)

Defined for all floating point vector classes
Inline version vectormath_exp.h
Library version not available
Description Extracts an error code hidden as payload in a NAN. This code can be

generated with the functions nan4f etc. (page 55) and propagated
through a series of calculations. When two NANs are combined (e.g.
NAN1+NAN2), current processors propagate the first one. NANs pro-
duced by CPU instructions, such as 0./0. or sqrt(-1.) have a code of
zero. NANs cannot propagate through integers and booleans.
The return value is the payload including the quiet bit. For double preci-
sion, the value is shifted 29 places to the right for the sake of compatibil-
ity with single precision.
The sign bit is ignored.
The return value is 0 for inputs that are not NAN.

Efficiency medium

67

Chapter 9

Performance considerations

9.1 Comparison of alternative methods for writing SIMD code
The SIMD (Single Instruction Multiple Data) instructions play an important role when software
performance has to be optimized. Several different ways of writing SIMD code are discussed below.

Assembly code
Assembly programming is the ultimate way of optimizing code. Almost anything is possible in
assembly code, but it is quite tedious and error-prone. There are thousands of different instructions,
and it is quite difficult to remember which instruction belongs to which instruction set extension.
Assembly code is difficult to document, difficult to debug, and difficult to maintain.

Intrinsic functions
Several compilers support intrinsic functions that are direct representations of machine instructions. A
big advantage of using intrinsic functions rather than assembly code is that the compiler takes care of
register allocation, function calling conventions, and other details that are difficult to keep track of
when writing assembly code. Another advantage is that the compiler can optimize the code further by
such methods as scheduling, interprocedural optimization, function inlining, constant propagation,
common subexpression elimination, loop invariant code motion, induction variables, etc. Many of
these optimization methods are rarely used in assembly code because they make the code unwieldy
and unmanageable. Consequently, the combination on intrinsic functions and a good optimizing
compiler can often produce more efficient code than what a decent assembly programmer would do.

A disadvantage of intrinsic functions is that these functions have long names that are difficult to
remember and they make the code look awkward.

Intel vector classes
Intel has published a number of vector classes in the form of three C++ header files named fvec.h,
dvec.h and ivec.h. These are simpler to use than the intrinsic functions, but unfortunately the Intel
vector class files are poorly maintained; they provide only the most basic functionality; and Intel has
done very little to promote, support, or develop them. The Intel vector classes have no way of
converting data between arrays and vectors. This leaves us with no way of putting data into a vector
other than specifying each element separately - which pretty much destroys the advantage of using
vectors. The Intel vector classes work only with Intel and MS compilers.

The VCL vector class library
The present vector class library has several important features, listed on page 4. It provides the same
level of optimization as the intrinsic functions, but it is much easier to use. This makes it possible to
make optimal use of the SIMD instructions without the need to remember the thousands of different
instructions or intrinsic functions. It also takes away the hassle of remembering which instruction
belongs to which instruction set extension and making different code versions for different instruction
sets.

68

Automatic vectorization
A good optimizing compiler is able to automatically transform linear code to vector code in simple
cases. Typically, a good compiler will vectorize an algorithm that loops through an array and does
some calculations on each array element.

Automatic vectorization is the easiest way of generating SIMD code, and I would very much
recommend to use this method when it works. Automatic vectorization may fail or produce
suboptimal code in the following cases:

• when the algorithm is too complex.

• when data have to be re-arranged in order to fit into vectors and it is not obvious to the
compiler how to do this, or when other parts of the code needs to be changed to handle the
re-arranged data.

• when it is not known to the compiler which data sets are bigger or smaller than the vector size.

• when it is not known to the compiler whether the size of a data set is a multiple of the vector
size or not.

• when the algorithm involves calls to functions that are defined elsewhere or cannot be inlined
and are not readily available in vector versions.

• when the algorithm involves many branches that are not easily vectorized.

• When the compiler cannot rule out that not-taken branches may generate false exceptions or
other side effects.

• when floating point operations have to be reordered or transformed and it is not known to the
compiler whether these transformations are permissible with respect to precision, overflow, etc.

• when functions are implemented with lookup tables.

The vector class library is intended as a good alternative when automatic vectorization fails to
produce optimal code for any of these reasons.

9.2 Choice of compiler and function libraries
It is recommended to compile for 64-bit mode because this gives access to more memory and more
registers. The CPU gives you access to only 8 vector registers in 32-bit mode, but 32 vector registers
in 64-bit mode if the AVX512 instruction set is enabled. Compiler options are listed in table 9.2.

The vector class library has support for the following compilers:

Gnu C++ compiler
This compiler has produced very good optimizations in my tests. The Gnu compiler (g++) is
available for all x86 and x86-64 platforms.

There are several versions of the Gnu compiler for the Windows platform. The version that comes
with msys2 is recommended. The Cygwin64 version is not recommended because it is using a less
efficient memory model.

Do not use the option -ffast-math or -ffinite-math-only on a Gnu compiler if you want to rely on INF
and NAN because these options may disable the detection of INF and NAN.

Clang C++ compiler

69

This compiler has produced the best optimized code in my tests. The Clang compiler is available for
all x86 and x86-64 platforms.

There are different versions of Clang available for the Windows platform. The msys2 version, and the
version that comes as a plugin for Visual Studio are both recommended. The Cygwin64 version is not
recommended because it is using a less efficient memory model.

Do not use the option -ffast-math or -ffinite-math-only on a Clang compiler if you want to rely on
INF and NAN because these options may disable the detection of INF and NAN.

Microsoft Visual Studio
This is a very popular compiler for Windows because it has a good and user friendly IDE (Integrated
Development Environment) and debugger. Make sure you are compiling for the ”unmanaged” version,
i. e. not using the .net common language runtime (CLR).

The Microsoft compiler optimizes reasonably well, but not as good as the other compilers. Support
for the latest instruction sets is incomplete.

Do not use the option /fp:fast on a Microsoft compiler because this may disable the detection of INF
and NAN.

Intel C++ compiler
Version 2021 or later of an Intel C++ compiler is required for compiling VCL version 2.xx.

The Intel C++ compiler currently comes in two versions: ”Intel C++ Compiler Classic” (icc for Linux
and icl for Windows) and ”Intel oneAPI LLVM-based C++ Compiler” (icx). The classic version is a
continuation of previous versions and is not recommended for new projects. The LLVM-based version
is based on a Clang compiler with additional ”Intel proprietary optimizations and code generation”.

Note that the Intel compiler ”Classic” and some of the function libraries favour Intel CPUs and
produce code that runs slower than necessary on CPUs of any other brand than Intel. Do not use the
Intel compiler ”Classic” for software that may run on non-Intel microprocessors. Code produced by
the Intel LLVM-based Compiler will usually give good performance on non-Intel processors. Avoid
command line options beginning with -x or /Qx. Code compiled with these options can only run on
Intel processors. See table 9.2 for an overview of command line options.

You may use the Intel LLVM-based Compiler if you need Intel-specific features. Otherwise, you may
as well prefer the pure Clang compiler which is almost identical.

Conclusion
My recommendation is to use the Clang or Gnu compiler for the release version of a program when
performance is important. Microsoft Visual Studio may be a convenient aid in the development phase
of a Windows project. Switching to Clang is easy because there is a Clang/LLVM plugin to Visual
Studio.

9.3 Choosing the optimal vector size and precision
It takes the same time to make a vector addition with vectors of eight single precision floats (Vec8f)
as with vectors of four double precision floats (Vec4d). Likewise, it takes the same time to add two
integer vectors whether the vectors have eight 32-bit integers (Vec8i) or sixteen 16-bit integers
(Vec16s). Therefore, it is advantageous to use the lowest precision or resolution that fits the data. It
may even be worthwhile to modify a floating point algorithm to reduce loss of precision if this allows
you to use single precision rather than double precision. Half precision can improve the performance

70

even further, if supported. However, you should also take into account the time it takes to convert
data from one precision to another. Therefore, it is not good to mix different precisions.

The total vector size is 128 bits, 256 or 512 bits, depending on the instruction set. The 256-bit
floating point vectors are advantageous when the AVX instruction set is available and enabled. The
256-bit integer vectors are advantageous under the AVX2 instruction set. The 512-bit integer and
floating point vectors are available with the AVX512 instruction set. Table 2.1 on page 8 lists the
recommended instruction set for each vector class. You can compile multiple versions of your code for
different instruction sets as explained in chapter 9.9 below. This makes it possible to code for the
largest vector size in order to make your code ready for the newest CPU’s. For example, if you are
using the vector class Vec16f then you will be using 512-bit vectors when the code is running on a
CPU that supports AVX512. The code will use two 256-bit vectors instead of one 512-bit vector when
running on a CPU with only AVX2.

Current microprocessors can typically do two full size vector operations per clock cycle in small loops.
(See Agner’s optimization manuals for details).

9.4 Putting data into vectors
The different ways of putting data into vectors are listed on page 12. If the vector elements are
constants known at compile time, then the fastest way is to use a constructor:

Example 9.1.

Vec4i a (1) ; // a = (1 , 1 , 1 , 1)
Vec4i b (2 , 3 , 4 , 5) ; // b = (2 , 3 , 4 , 5)

If the vector elements are not constants then the fastest way is to load from an array with the
method load. However, it is not good to load data from an array immediately after writing the data
elements to the array one by one, because this causes a ”store forwarding stall” (see Agner’s
microarchitecture manual). This is illustrated in the following examples:

Example 9.2.

// Make vec to r us ing con s t ruc to r
i n t MakeMyData(i n t i) ; // make whatever data we need
void DoSomething (Vec4i & data) ; // handle the se data
const i n t da t a s i z e = 1000 ; // t o t a l number data e lements

. . .
f o r (i n t i = 0 ; i < da t a s i z e ; i += 4) {

Vec4i d(MakeMyData(i) , MakeMyData(i +1) ,
MakeMyData(i +2) , MakeMyData(i +3)) ;

DoSomething (d) ;
}

Example 9.3.

// Load from smal l array
i n t MakeMyData(i n t i) ; // make whatever data we need
void DoSomething (Vec4i & data) ; // handle the se data
const i n t da t a s i z e = 1000 ; // t o t a l number data e lements

. . .
f o r (i n t i = 0 ; i < da t a s i z e ; i += 4) {

71

https://www.agner.org/optimize/#manuals
https://www.agner.org/optimize/#manual_cpp
https://www.agner.org/optimize/#manual_cpp

i n t data4 [4] ;
f o r (i n t j = 0 ; j < 4 ; j++) {

data4 [j] = MakeMyData(i+j) ;
}
// s t o r e forwarding s t a l l f o r l a r g e read a f t e r smal l w r i t e s :
Vec4i d = Vec4i () . load (data4) ;
DoSomething (d) ;

}

Example 9.4.

// Make array a l i t t l e b i gge r
i n t MakeMyData(i n t i) ; // make whatever data we need
void DoSomething (Vec4i & data) ; // handle the se data
const i n t da t a s i z e = 1000 ; // t o t a l number data e lements

. . .
f o r (i n t i = 0 ; i < da t a s i z e ; i += 8) {

i n t data8 [8] ;
f o r (i n t j = 0 ; j < 8 ; j++) {

data8 [j] = MakeMyData(i+j) ;
}
Vec4i d ;
f o r (i n t k = 0 ; k < 8 ; k += 4) {

d . load (data8 + k) ;
DoSomething (d) ;

}
}

Example 9.5.

// Make array f u l l s i z e
i n t MakeMyData(i n t i) ; // make whatever data we need
void DoSomething (Vec4i & data) ; // handle the se data
const i n t da t a s i z e = 1000 ; // t o t a l number data e lements

. . .
i n t data1000 [da t a s i z e] ;
i n t i ;
f o r (i = 0 ; i < da t a s i z e ; i++) {

data1000 [i] = MakeMyData(i) ;
}
Vec4i d ;
f o r (i = 0 ; i < da t a s i z e ; i += 4) {

d . load (data1000 + i) ;
DoSomething (d) ;

}

Example 9.6.

// Use i n s e r t . No array needed
i n t MakeMyData(i n t i) ; // make whatever data we need
void DoSomething (Vec4i & data) ; // handle the se data

72

const i n t da t a s i z e = 1000 ; // t o t a l number data e lements
. . .

Vec4i d ; // de c l a r e vec to r
f o r (i n t i = 0 ; i < da t a s i z e ; i += 4) {

f o r (i n t j = 0 ; j < 4 ; j++) {
d . i n s e r t (j , MakeMyData(i+j)) ; // i n s e r t element

}
DoSomething (d) ;

}

In example 9.2, we are combining four data elements into vector d by calling a constructor with four
parameters. This may not be the most efficient way because it requires several instructions to
combine the four numbers into a single vector.

In example 9.3, we are putting the four values into an array and then loading the array into a vector.
This is causing the so-called store forwarding stall. A store forwarding stall occurs in the CPU
hardware when doing a large read (here 128 bits) immediately after a smaller write (here 32 bits) to
the same address range. This causes a delay of 10 - 20 clock cycles.

In example 9.4, we are putting eight values into an array and then reading four elements at a time. If
we assume that it takes more than 10 - 20 clock cycles to call MakeMyData four times then the first
four elements of the array will have sufficient time to make it into the level-1 cache while we are
writing the next four elements. This delay is sufficient to avoid the store forwarding stall. A
disadvantage of example 9.4 is that we need an extra loop.

In example 9.5, we are putting a thousand elements into an array before loading them. This is certain
to avoid the store forwarding stall. A disadvantage of example 9.5 is that the large array takes more
cache space.

Example 9.6 avoids any memory intermediate by inserting elements directly into the vector. This
method is most efficient when the AVX512VL instruction set is enabled. The compiler is likely to keep
often-used vectors in registers without saving them to memory.

9.5 Alignment of arrays and vectors
Reading and writing vectors from or to memory is likely to be slightly faster if the array in memory is
aligned to an address divisible by the vector size. The vector size is 16, 32, or 64 bytes for 128, 256,
and 512 bits, respectively. The program may not work when compiled for an instruction set less than
AVX if vectors are not aligned by at least 16.

Most compilers will align large arrays automatically if they are stored in static memory, but perhaps
not if they are stored in local memory or allocated with operator new, etc.

An array can be aligned with the alignas keyword, for example:

a l i g n a s (64) f l o a t mydata [1 0 2 4] ;

Older compilers use __declspec(align(64)) in Windows, or __attribute__((aligned(64)) in Linux.

It is always recommended to align large arrays for performance reasons if the code uses vectors. C++
version 17 supports alignment with std::aligned_alloc.

A useful method is to align an array of vectors with operator new. The compiler recognizes that a
vector class, e.g. Vec8f, needs alignment. An array of such vectors will be aligned correctly, even
when allocated with new. This is illustrated in the following example:

73

// s i z e o f dataset , as number o f f l o a t s :
i n t da t a s i z e = 1024 ;

// va r i ab l e s i z e array , proper ly a l i gned
// (assuming that da t a s i z e i s d i v i s i b l e by vec to r s i z e) :
Vec8f *mydata = new Vec8f [d a t a s i z e / Vec8f : : s i z e ()] ;

// a c c e s s array as s i n g l e e lements :
f l o a t * mydataf = (f l o a t *)mydata ;
i n t i ;
f o r (i = 0 ; i < da t a s i z e ; i++) {

mydataf [i] = (f l o a t) i ;
}

// a c c e s s array as ve c t o r s :
Vec8f x ;
f o r (i = 0 ; i < da t a s i z e / Vec8f : : s i z e () ; i++) {

x = mydata [i] ;
x *= 100 . f ;
mydata [i] = x ;

}

// remember to f r e e the a l l o c a t e d data :
d e l e t e [] mydata ;

The container class template ContainerV is available as an add-on to the vector class library. This is
useful for making a properly aligned array of vectors.

Finally, it is possible to do the alignment manually as illustrated in this example:

// Example o f a l i g n i n g memory
i n t a r rayS i z e = 1024 ; // Required array s i z e
const i n t al ignBy = 64 ; // Required al ignment (must be a power o f 2)
// a l l o c a t e more than needed
char * unal ignedAddress = new char [a r r ayS i z e * s i z e o f (f l o a t) + al ignBy] ;
// round up the address to nea r e s t mu l t ip l e o f al ignBy
char * a l ignedAddress = (char *) (((s i z e_t) unal ignedAddress+alignBy - 1) &

(- al ignBy)) ;

// ca s t a l i gned po in t e r to r equ i r ed type
f l o a t * mydataf = (f l o a t *) a l ignedAddress ;

// use the a l i gned array
f o r (i n t i = 0 ; i < ar rayS i z e ; i++) {

mydataf [i] = (f l o a t) i ;
}

// remember to f r e e at unal ignedAddress , not a l ignedAddress
d e l e t e [] unal ignedAddress ; // f r e e memory

74

9.6 When the data size is not a multiple of the vector size
It is obviously easier to vectorize a data set when the number of elements in the data set is a multiple
of the vector size. Here, we will discuss different ways of handling the situation when the data do not
fit into an integral number of vectors. We will use the simple example of adding 134 integers stored
in an array. The following examples illustrate different solutions.

Example 9.7.

// Handling the remaining data one by one
const i n t da t a s i z e = 134 ;
const i n t v e c t o r s i z e = 8 ;
const i n t r e gu l a rpa r t = da ta s i z e & (- v e c t o r s i z e) ; // = 128
// (AND- ing with - v e c t o r s i z e w i l l round down to the nea r e s t
// lower mu l t ip l e o f v e c t o r s i z e . This works only i f v e c t o r s i z e
// i s a power o f 2)

i n t mydata [da t a s i z e] ;
. . . // i n i t i a l i z e mydata

Vec8i sum1 (0) , temp ;
i n t i ;
// loop f o r 8 numbers at a time
f o r (i = 0 ; i < r egu l a rpa r t ; i += v e c t o r s i z e) {

temp . load (mydata+i) ; // load 8 e lements
sum1 += temp ; // add 8 elements

}
i n t sum = 0 ;
// loop f o r the remaining 6 numbers
f o r (; i < da t a s i z e ; i++) {

sum += mydata [i] ;
}
sum += horizontal_add (sum1) ; // add the vec to r sum

Example 9.8.

// Handling the remaining data with a sma l l e r vec to r s i z e
const i n t da t a s i z e = 134 ;
const i n t v e c t o r s i z e = 8 ;
const i n t r e gu l a rpa r t = da ta s i z e & (- v e c t o r s i z e) ; // = 128
i n t mydata [da t a s i z e] ;

. . . // i n i t i a l i z e mydata

Vec8i sum1 (0) , temp ;
i n t sum = 0 ;
i n t i ;
// loop f o r 8 numbers at a time
f o r (i = 0 ; i < r egu l a rpa r t ; i += v e c t o r s i z e) {

temp . load (mydata+i) ; // load 8 e lements
sum1 += temp ; // add 8 elements

}
sum = horizontal_add (sum1) ; // sum of f i r s t 128 numbers
i f (d a t a s i z e - i >= 4) {

75

// get four more numbers
Vec4i sum2 ;
sum2 . load (mydata+i) ;
i += 4 ;
sum += horizontal_add (sum2) ;

}
// loop f o r the remaining 2 numbers
f o r (; i < da t a s i z e ; i++) {

sum += mydata [i] ;
}

Example 9.9.

// Use p a r t i a l load f o r the l a s t vec to r
const i n t da t a s i z e = 134 ;
const i n t v e c t o r s i z e = 8 ;
const i n t r e gu l a rpa r t = da ta s i z e & (- v e c t o r s i z e) ; // = 128

i n t mydata [da t a s i z e] ;
. . . // i n i t i a l i z e mydata

Vec8i sum1 (0) , temp ;
// loop f o r 8 numbers at a time
f o r (i n t i = 0 ; i < r egu l a rpa r t ; i += v e c t o r s i z e) {

temp . load (mydata+i) ; // load 8 e lements
sum1 += temp ; // add 8 elements

}
// load the l a s t 6 e lements
temp . l oad_par t i a l (data s i z e - r egu la rpar t , mydata+regu l a rpa r t) ;
sum1 += temp ; // add l a s t 6 e lements

i n t sum = horizontal_add (sum1) ; // vec to r sum

Example 9.10.

// Read past the end o f the array and ignore exce s s data
const i n t da t a s i z e = 134 ;
const i n t v e c t o r s i z e = 8 ;
i n t mydata [da t a s i z e] ;

. . . // i n i t i a l i z e mydata

Vec8i sum1 (0) , temp ;
// loop f o r 8 numbers at a time , read ing 136 numbers
f o r (i n t i = 0 ; i < da t a s i z e ; i += v e c t o r s i z e) {

temp . load (mydata+i) ; // load 8 e lements
i f (d a t a s i z e - i < v e c t o r s i z e) {

// s e t exc e s s data to zero
// (t h i s may be f a s t e r than load_par t i a l)
temp . c u t o f f (da t a s i z e - i) ;

}
sum1 += temp ; // add 8 elements

}
i n t sum = horizontal_add (sum1) ; // vec to r sum

76

Example 9.11.

// Make array b igge r and s e t exc e s s data to zero
const i n t da t a s i z e = 134 ;
const i n t v e c t o r s i z e = 8 ;
// round up da t a s i z e to nea r e s t h igher mu l t ip l e o f v e c t o r s i z e
const i n t a r r a y s i z e =

(da t a s i z e + v e c t o r s i z e - 1) & (- v e c t o r s i z e) ; // = 136
i n t mydata [a r r a y s i z e] ;
i n t i ;

. . . // i n i t i a l i z e mydata

// s e t exc e s s data to zero
f o r (i = da t a s i z e ; i < a r r a y s i z e ; i++) {

mydata [i] = 0 ;
}

Vec8i sum1 (0) , temp ;
// loop f o r 8 numbers at a time , read ing 136 numbers
f o r (i = 0 ; i < a r r a y s i z e ; i += v e c t o r s i z e) {

temp . load (mydata+i) ; // load 8 e lements
sum1 += temp ; // add 8 elements

}
i n t sum = horizontal_add (sum1) ; // vec to r sum

It is clearly advantageous to increase the array size to a multiple of the vector size, as in example 9.11
above. Likewise, if you are storing vector data to an array, then it is an advantage to make the result
array bigger to hold the excess data. If this is not possible then use store_partial to write the last
partial vector to the array.

It is usually possible to read past the end of an array, as in example 9.10 above, without causing
problems. However, there is a theoretical possibility that the array is placed at the very end of the
readable data section so that the program will crash when attempting to read from an illegal address
past the end of the valid data area. To consider this problem, we need to look at each possible
method of data storage:

• An array declared inside a function, and not static, is stored on the stack. The subsequent
addresses on the stack will contain the return address and parameters for the function, followed
by local data, parameters, and return address of the next higher function all the way up to
main. In this case there is plenty of extra data to read from.

• A static or global array is stored in static data memory. The static data area is often followed
by library data, exception handler tables, link tables, etc. These tables can be seen by
requesting a map file from the linker.

• Data allocated with the operator new are stored on the heap. I have no information of the size
of the end node in a heap.

• If an array is declared inside a class definition then one of the three cases above applies,
depending on how the class instance (object) is created.

These problems can be avoided either by making the array bigger or by aligning the array to an
address divisible by the vector size, as described on page 73. The memory page size is at least 4
kbytes, and always a power of 2. If the array is aligned by the vector size then the page boundaries
are certain to coincide with vector boundaries. This makes sure that there is no memory page

77

boundary between the end of the array and the next vector-size boundary. Therefore, we can read up
to the next vector-size boundary without the risk of crossing a boundary to an invalid memory page.

The add-on package named ’containers’ includes efficient container class templates for arrays of fixed
size and dynamic size, as well as matrixes. These containers will automatically extend arrays to a
multiple of the vector size. Use the container class template ContainerV for making arrays that fit
the vector classes. See containers_manual.pdf for details.

9.7 Using multiple accumulators
Consider this function which adds a long list of floating point numbers:

Example 9.12.

double add_long_list (double const * p , i n t n) {
i n t n1 = n & (-4) ; // round down n to mul t ip l e o f 4
Vec4d sum (0 . 0) ;
i n t i ;
f o r (i = 0 ; i < n1 ; i += 4) {

sum += Vec4d () . load (p + i) ; // add 4 numbers
}
// add any remaining numbers
sum += Vec4d () . l oad_par t i a l (n - i , p + i) ;
r e turn hor izontal_add (sum) ;

}

In this example, we have a loop-carried dependency chain (see Agner’s C++ manual). The vector
addition inside the loop has a latency of typically 3 - 5 clock cycles. As each addition has to wait for
the result of the previous addition, the loop will take 3 - 5 clock cycles per iteration.

However, the throughput of floating point additions is typically one or two vector additions per clock
cycle. Therefore, we are far from fully utilizing the capacity of the floating point adder. In this
situation, we can double the speed by using two accumulators:

Example 9.13.

double add_long_list (double const * p , i n t n) {
i n t n2 = n & (-8) ; // round down n to mul t ip l e o f 8
Vec4d sum1 (0 . 0) , sum2 (0 . 0) ;
i n t i ;
f o r (i = 0 ; i < n2 ; i += 8) {

sum1 += Vec4d () . load (p + i) ; // add 4 numbers
sum2 += Vec4d () . load (p + i + 4) ; // 4 more numbers

}
i f (n - i >= 4) {

// add 4 more numbers
sum1 += Vec4d () . load (p + i) ;
i += 4 ;

}
// add any remaining numbers
sum2 += Vec4d () . l oad_par t i a l (n - i , p + i) ;
r e turn hor izontal_add (sum1 + sum2) ;

}

78

https://www.agner.org/optimize/#manual_cpp

Here, the addition to sum2 can begin before the addition to sum1 is finished. The loop still takes 3 -
5 clock cycles per iteration, but the number of additions done per loop iteration is doubled. It may
even be worthwhile to have three or four accumulators in this case if n is very big.

In general, if we want to predict whether it is advantageous to have more than one accumulator, we
first have to see if there is a loop-carried dependency chain. If the performance is not limited by a
loop-carried dependency chain then there is no need for multiple accumulators. Next, we have to look
at the latency and throughput of the instructions inside the loop. Floating point addition, subtraction
and multiplication all have latencies of typically 3 - 5 clock cycles and a throughput of one or two
vector additions/subtractions/multiplications per clock cycle. Therefore, if the loop-carried
dependency chain involves floating point addition, subtraction or multiplication; and the total number
of floating point operations per loop iteration is lower than the maximum throughput, then it may be
advantageous to have two accumulators, or perhaps more than two.

There is rarely any reason to have multiple accumulators in integer code, because an integer vector
addition has a latency of just 1 or 2 clock cycles.

9.8 Using multiple threads
Performance can be improved by dividing the work between multiple threads running in parallel on
processors with multiple CPU cores. It is important to distinguish between coarse-grained parallelism
and fine-grained parallelism. Coarse-grained parallelism refers to the situation where a long sequence
of operations can be carried out independently of other tasks that are running in parallel.
Fine-grained parallelism is the situation where a task is divided into many small subtasks, but it is
impossible to work for very long on a particular subtask before coordination with other subtasks is
necessary.

Vector operations are useful for fine-grained parallelism, while multithreading is useful only for
coarse-grained parallelism. The work should be divided between threads in such as way that
communication between the threads is avoided, or at least kept at a minimum.

Modern computers have multiple CPU cores. It is often possible to run two threads simultaneously in
each CPU core. This is called simultaneous multithreading (SMT) or hyperthreading. Two threads
running in the same CPU core will be competing for the same CPU resources so that each thread is
getting only half of the available resources. Therefore, SMT is not advantageous for CPU-intensive
code such as heavy mathematical calculations.

The optimal number of threads for CPU-intensive code is equal to the number of CPU cores or
physical processors. If the code is not CPU-intensive, i.e. if the performance is limited by something
else such as RAM, disk access, or network speed, then you will probably get better performance by
setting the number of threads equal to the number of logical processors. This is the number of
threads that can run simultaneously without task switching. The number of logical processors is
double the number of physical processors if each CPU core can run two threads simultaneously.

The function physicalProcessors() gives information about the number of physical and logical
processors (see page 83).

It is not safe to access the same data from multiple threads simultaneously. For example, it may be
uncertain whether one thread is reading a value before or after it has been modified by another
thread. Container classes, in particular, are unsafe to access from multiple threads.

The floating point control word (see p. 55) is not shared between threads.

79

9.9 Instruction sets and CPU dispatching
Historically, almost every new generation of microprocessors has added a new extension to the
instruction set. Most of the new instructions relate to vector operations. We can take advantage of
these new instructions to make vector code more efficient. The vector class library requires the SSE2
instruction set as a minimum, but it makes more efficient code when a higher instruction set is used.
Table 9.1 indicates things that are improved for each successive instruction set extension.

Table 9.1: Instruction set history
Instruction
set

Year
introduced

VCL functions improved

SSE2 2001 minimum requirement for vector class library
SSE3 2004 floating point horizontal_add
SSSE3 2006 permute, blend and lookup functions, integer abs
SSE4.1 2007 select, blend, horizontal_and, horizontal_or, integer

max/min, integer multiply (32 and 64 bit), integer divide
(32 bit), 64-bit integer compare (==, !=), floating point
round, truncate, floor, ceil.

SSE4.2 2008 64-bit integer compare (>, >=, <, <=). 64 bit integer max,
min

AVX 2011 all operations on 256-bit floating point vectors: Vec8f, Vec4d
XOP
AMD only

2011 compare, horizontal_add_x, rotate_left, blend, and lookup
on 128-bit integer vectors. Obsolete.

FMA4
AMD only

2011 floating point code containing multiplication followed by
addition. Obsolete.

FMA3 2012 floating point code containing multiplication followed by
addition

AVX2 2013 All operations on 256-bit integer vectors: Vec32c, Vec32uc,
Vec16s, Vec16us, Vec8i, Vec8ui, Vec4q, Vec4uq. Gather.

F16C 2013 Conversion between single precision and half precision floating
point numbers.

AVX512F 2016 All operations on 512-bit integer and floating point vectors:
Vec16i, Vec16ui, Vec8q, Vec8uq, Vec16f, Vec8d.

AVX512BW 2018 512 bit vectors with 8-bit and 16-bit integer elements
AVX512DQ 2018 Faster multiplication of vectors of 64-bit integers.
AVX512VL 2018 Compact boolean vectors for 128 and 256 bit data. Improved

performance of insert, extract, load_partial, store_partial,
and several other functions.

AVX512ER 2016 Only on a few processor models have this. Fast exponen-
tial functions. Better precision on approx_recipr and ap-
prox_rsqrt.

AVX512VBMI 2018 Faster permutation functions etc. for Vec32c and Vec64c
AVX512VBMI2 2019 Faster extract from 8-bit and 16-bit integer vectors
AVX512-FP16 future Half precision floating point calculations.

The vector class library makes it possible to compile for different instruction sets from the same
source code. Different versions are made simply by recompiling the code with different compiler
options. The instruction set to use in VCL can be specified on the compiler command line as listed in
table 9.2.

The Microsoft compiler does not have command line options for all the instruction sets, but other
instruction sets can be specified as defines which are detected in the preprocessing directives of the

80

Table 9.2: Command line options
Instruction set Gnu and Clang

compiler
Intel compiler
Linux

Intel compiler
Windows

MS compiler

SSE2 -msse2 -msse2 /arch:sse2 /arch:sse2
SSE3 -msse3 -msse3 /arch:sse3 /arch:sse2

/D__SSE3__
SSSE3 -mssse3 -mssse3 /arch:ssse3 /arch:sse2

/D__SSSE3__
SSE4.1 -msse4.1 -msse4.1 /arch:sse4.1 /arch:sse2

/D__SSE4_1__
SSE4.2 -msse4.2 -msse4.2 /arch:sse4.2 /arch:sse2

/D__SSE4_2__
AVX -mavx

-fabi-version=0
-mavx /arch:avx /arch:avx /DIN-

STRSET=7
FMA3 -mfma -mfma -mfma /DINSTRSET=7
AVX2 -mavx2

-fabi-version=0
-mavx2 /arch:avx2 /arch:avx2

/DINSTRSET=8
F16C -mf16c -mf16c /arch:avx2 /D__F16C__
AVX512F -mavx512f -mavx512f /arch:COMMON-

AVX512
not sup-
ported without
AVX512DQ

AVX512VL/BW/
DQ

-mavx512vl
-mavx512bw
-mavx512dq

-mavx512vl
-mavx512bw
-mavx512dq

/arch:CORE-
AVX512

/arch:avx2
/DIN-
STRSET=10

AVX512VBMI -mavx512vbmi -mavx512vbmi ?? /D
__AVX512VBMI__

AVX512VBMI2 -mavx512vbmi2 -mavx512vbmi2 ?? /D
__AVX512VBMI2__

AVX512ER -mavx512er -xMIC-AVX512 /arch:MIC-
AVX512

/D__AVX512ER__

AVX512-FP16 -mavx512fp16 -mavx512fp16 /arch:SAPPHIR-
ERAPIDS

/D__AVX512FP16__

vector class library.

The FMA3 instruction set is not always handled directly by the code in the vector class library, but by
the compiler. The compiler may automatically combine a floating point multiplication and a
subsequent addition or subtraction into a single instruction, unless you have specified a strict floating
point model.

It is recommended to specify compiler options that allow efficient code optimizations. Suitable
options on Gnu and Clang compilers are -O2 -fno-trapping-math -fno-math-errno. The option -O3 is
sometimes better than -O2, but in some cases it is worse. You may test whether -O2 or -O3 gives the
best performance in your specific case.
Suitable options on Microsoft and Intel compilers are /O2 /fp:except-.

There is no advantage in using the biggest vector classes unless the corresponding instruction set is
specified, but it can be convenient to use these classes anyway if the same source code is compiled for
multiple versions with different instruction sets. Each large vector will simply be split up into two or
four smaller vectors when compiling for a lower instruction set.

It is recommended to make an automatic CPU dispatcher that detects at runtime which instruction
sets are supported by the actual CPU, and selects the best version of the code accordingly. For

81

example, you may compile the code three times for three different instruction sets: SSE2, AVX2 and
AVX512VL/BW/DQ. The CPU dispatcher will then set a function pointer to point to the appropriate
version of the compiled code. You can use the function instrset_detect (see below, page 82) to detect
the supported instruction set. Two examples are provided to show how to do the CPU dispatching:

dispatch_example1.cpp: This example is using different function names for the different versions.
This is useful for simple cases with only one or a few functions.

dispatch_example2.cpp: This example is using different namespaces for the different versions. This is
the preferred method if the code contains multiple functions, classes, objects, etc.

There is an important restriction when you are combining code compiled for different instruction sets:
Do not transfer any data as vector objects between different pieces of code that are compiled for
different instruction sets because the vectors may be represented differently under the different
instruction sets. It is recommended to transfer the data as arrays instead between different parts of
the program that are compiled for different instruction sets.

The functions listed below can be used for detecting at runtime which instruction set is supported,
and other useful information about the CPU.

The function instrset_detect() gives a value representing the instruction set level.

Function int instrset_detect()
Source instrset_detect.cpp
Description returns one of these values:

0 = 80386 instruction set
1 or above = SSE supported by CPU
2 or above = SSE2
3 or above = SSE3
4 or above = Supplementary SSE3 (SSSE3)
5 or above = SSE4.1
6 or above = SSE4.2
7 or above = AVX
8 or above = AVX2
9 or above = AVX512F
10 or above = AVX512VL, AVX512BW, and AVX512DQ

Efficiency poor

Additional instruction set extensions are not necessarily part of a linear sequence. These extensions
can be detected with the following functions.

Function bool hasFMA3()
Source instrset_detect.cpp
Description returns true if FMA3 is supported
Efficiency poor

Function bool hasAVX512ER()
Source instrset_detect.cpp
Description returns true if AVX512ER is supported
Efficiency poor

82

Function bool hasAVX512VBMI()
Source instrset_detect.cpp
Description returns true if AVX512VBMI is supported
Efficiency poor

Function bool hasAVX512VBMI2()
Source instrset_detect.cpp
Description returns true if AVX512VBMI2 is supported
Efficiency poor

Function bool hasF16C()
Source instrset_detect.cpp
Description returns true if F16C is supported
Efficiency poor

Function bool hasAVX512FP16()
Source instrset_detect.cpp
Description returns true if AVX512-FP16 is supported
Efficiency poor

Function int physicalProcessors(int * logical_processors = 0)
Source add-on/physical_processors.cpp
Description Returns the number of physical processors = the number

of CPU cores. The number of logical processors (returned
through logical_processors) is double the number of physical
processors if the CPU can run two threads simultaneously in
each CPU core.

Efficiency poor

9.10 Function calling convention
Function calls are most efficient when vectors are transferred in registers rather than in memory. This
can be achieved in various ways:

• Use inline functions. This is useful for small functions and for functions that are only called in
one place. An optimizing compiler may inline functions automatically, even if they are not
specified as inline. You may declare such functions static as well to prevent the compiler from
making a non-inline copy of the inlined function.

• Use Linux or MacOS. Vector parameters are transferred in registers by default on these
platforms. Vector function returns are transferred in registers in 64-bit mode.

• Use __vectorcall in 64-bit Windows. The Clang and Microsoft compilers can transfer vector
parameters and vector returns in registers when __vectorcall is used on the function
declaration. See the example on page 84.

• Use a vector size that fits the instruction set, according to table 2.1 on page 8.

83

Chapter 10

Examples

This example calculates the polynomial x3 + 2 · x2 − 5 · x+ 1 on a floating point vector. The order of
calculation is specified by parentheses in order to make shorter dependency chains.

Example 10.1.

Vec4f polynomial (Vec4f x) {
re turn (x + 2 .0 f) * (x * x) + ((- 5 . 0 f) * x + 1 .0 f) ;

}

In 64-bit Windows, you may add __vectorcall and use a Clang or Microsoft compiler. This makes
sure that vector parameters are transferred in registers rather than in memory. This is not needed
when the function is inlined or when compiling for other platforms than Windows:

Example 10.2.

Vec4f __vectorca l l polynomial (Vec4f x) {
re turn (x + 2 .0 f) * (x * x) + ((- 5 . 0 f) * x + 1 .0 f) ;

}

The next example transposes a 4x4 matrix, using the AVX2 instruction set.

Example 10.3.

void t ranspose (f l o a t matrix [4] [4]) {
Vec8f row01 , row23 , co l01 , co l 23 ;
// load f i r s t two rows
row01 . load(&matrix [0] [0]) ;
// load next two rows
row23 . load(&matrix [2] [0]) ;
// r eo rde r in to columns
co l01 = blend8f <0 ,4 , 8 ,12 ,1 ,5 , 9 ,13>(row01 , row23) ;
co l 23 = blend8f <2 ,6 ,10 ,14 ,3 ,7 ,11 ,15 >(row01 , row23) ;
// s t o r e columns in to rows
co l01 . s t o r e (&matrix [0] [0]) ;
co l 23 . s t o r e (&matrix [2] [0]) ;

}

Same example with AVX512:

Example 10.4.

84

void t ranspose (f l o a t matrix [4] [4]) {
Vec16f rows , columns ;
// load e n t i r e matrix as rows
rows . load(&matrix [0] [0]) ;
// r eo rde r in to columns
columns = permute16f <0 ,4 ,8 ,12 ,1 ,5 ,9 ,13 ,

2 ,6 ,10 ,14 ,3 ,7 ,11 ,15 >(rows) ;
// s t o r e columns in to rows
columns . s t o r e (&matrix [0] [0]) ;

}

The next example makes a matrix multiplication of two 4x4 matrixes.

Example 10.5.

void matrixmul (f l o a t A[4] [4] , f l o a t B [4] [4] , f l o a t M[4] [4]) {
// c a l c u l a t e s M = A*B
Vec4f Brow [4] , Mrow [4] ;
i n t i , j ;
// load B as rows
f o r (i = 0 ; i < 4 ; i++) {

Brow [i] . load(&B[i] [0]) ;
}
// loop f o r A and M rows
f o r (i = 0 ; i < 4 ; i++) {

Mrow[i] = Vec4f (0 . 0 f) ;
// loop f o r A columns , B rows
f o r (j = 0 ; j < 4 ; j++) {

Mrow[i] += Brow [j] * A[i] [j] ;
}

}
// s t o r e M
f o r (i = 0 ; i < 4 ; i++) {

Mrow[i] . s t o r e (&M[i] [0]) ;
}

}

The next example makes a table of the sin function and gets sin(x) and cos(x) by table lookup.

Example 10.6.

#inc lude <cmath>

const double p i = 3.14159265358979323846;

// l ength o f t ab l e . Must be a power o f 2 .
#de f i n e s i n_tab l e l en 1024
// the accuracy o f t ab l e lookup i s +/- p i / s i n_tab l e l en

c l a s s SinTable {
protec t ed :

85

f l o a t t ab l e [s i n_tab l e l en] ;
f l o a t r e s o l u t i o n ;
f l o a t r r e s ; // 1 ./ r e s o l u t i o n

pub l i c :
SinTable () ; // con s t ruc to r
Vec4f s i n (Vec4f x) ;
Vec4f cos (Vec4f x) ;

} ;

SinTable : : SinTable () { // cons t ruc to r
// compute r e s o l u t i o n
r e s o l u t i o n = f l o a t (2 . 0 * p i / s i n_tab l e l en) ;
r r e s = 1 .0 f / r e s o l u t i o n ;
// I n i t i a l i z e t ab l e (No need to use ve c t o r s here because t h i s
// i s c a l c u l a t ed only once :)
f o r (i n t i = 0 ; i < s in_tab l e l en ; i++) {

tab l e [i] = s i n f ((f l o a t) i * r e s o l u t i o n) ;
}

}

Vec4f SinTable : : s i n (Vec4f x) {
// c a l c u l a t e s i n by tab l e lookup
Vec4i index = roundi (x * r r e s) ;
// modulo t ab l e l e n equ iva l en t to modulo 2* p i
index &= s in_tab l e l en - 1 ;
// look up in tab l e
re turn lookup<s in_tab le l en >(index , t ab l e) ;

}

Vec4f SinTable : : cos (Vec4f x) {
// c a l c u l a t e cos by tab l e lookup
Vec4i index = roundi (x * r r e s) + s in_tab l e l en /4 ;
// modulo t ab l e l e n equ iva l en t to modulo 2* p i
index &= s in_tab l e l en - 1 ;
// look up in tab l e
re turn lookup<s in_tab le l en >(index , t ab l e) ;

}

i n t main () {
SinTable s in tab ;
Vec4f a (0 . 0 f , 0 . 5 f , 1 . 0 f , 1 . 5 f) ;
Vec4f b = s in tab . s i n (a) ;
// b = (0 .0000 0 .4768 0 .8416 0 .9973)
// accuracy +/- 0 .003
. . .
r e turn 0 ;

}

86

Chapter 11

Add-on packages

Various extra packages are available with code for special applications. These packages are stored at
https://github.com/vectorclass/add-on. Manuals are included with each package. The add-on
packages for VCL include:

Container classes. Container class templates for storing arrays of vectors. More efficient than the
standard C++ container class templates.
This package also contains a class template for matrices where matrix rows are stored as VCL
vectors. Various functions are included for accessing matrix elements and rows and for packing
and unpacking matrix data.

Random number generator. A high-quality pseudo random number generator. Capable of
generating random integer and floating point vectors. Suitable for large multi-threaded
applications.

Decimal string conversion. Converts integer vectors to and from comma-separated lists in
human-readable decimal ASCII form. Useful for reading and writing comma-separated files.

3-dimensional vectors. Defines 3-dimensional vectors for use in geometry and physics. Includes
operators and functions for addition, multiplication, dot product, cross product, and rotation.

Complex number vectors. Defines complex number vectors for use in mathematics and electronics.
Includes operators for add, subtract, multiply, divide, and conjugate, as well as functions such as
complex square root, exponential function, and logarithm.

Quaternions. Defines quaternions (hypercomplex numbers) for use in mathematics. Includes
operators for add, subtract, multiply, divide, conjugate, etc.

87

https://github.com/vectorclass/add-on

Chapter 12

Technical details

12.1 Error conditions

Runtime errors

The vector class library is generally not producing runtime error messages. An index out of range
produces behavior that is implementation-dependent. This means that the output may be different for
different instruction sets or for different versions of the vector class library.

For example, an attempt to read a vector element with an index that is out of range may result in
various behaviors, such as producing zero, taking the index modulo the vector size, giving the last
element, or producing an arbitrary value. Likewise, an attempt to write a vector element with an
index that is out of range may variously take the index modulo the vector size, write the last element,
or do nothing. This applies to functions such as insert, extract, load_partial, store_partial, cutoff,
permute, blend, lookup, and gather. The same applies to a bit-index that is out of range in rotate
functions and shift operators («, »).

Boolean vectors in the broad form (see page 32) are stored as integer vectors. The only allowed
values for boolean vector elements in this case are 0 (false) and -1 (true). The behavior for other
values is implementation-dependent and possibly inconsistent. For example, the behavior of the select
function when a boolean selector element is a mixture of 0 and 1 bits depends on the instruction set.
For instruction sets prior to SSE4.1, it will select between the operands bit-by-bit. For SSE4.1 and
higher it will select integer vectors byte-by-byte, using the leftmost bit of each byte in the selector
input. For floating point vectors under SSE4.1 and higher, it will use only the leftmost bit (sign bit)
of the selector. Boolean vectors in the compact form have only one bit for each element.

An integer division by a variable that is zero will usually produce a runtime exception.

A program crash may be caused by alignment errors with instruction sets prior to AVX. This can
happen if a VCL vector is stored in a dynamic array or a container class template instance that does
not have correct alignment. See page 73

Floating point errors

The Vector Class Library produces infinity (INF) or ”Not A Number” (NAN) to indicate floating point
errors, as discussed on page 90. Floating point overflow will usually produce infinity, floating point
underflow produces zero, and an invalid floating point operation produces NAN (Not A Number).
The INF and NAN codes will usually propagate to the end result where they can be detected.

There are a few cases where INF and NAN codes do not propagate. For example, dividing a nonzero
number by INF produces zero. Error codes cannot propagate through integer and boolean vectors.
For example:

88

Vec4d a , b ;
. . .
Vec4db f = a > 1 . 0 ;
b = s e l e c t (f , a , 0 . 5) ;

The boolean vector elements in f will be either true or false, even if a is NAN, because a boolean can
have no other values. In the case that an element of a is NAN, the corresponding element in f will be
false, and the element in b will be 0.5. The NAN error is not propagated from a to b. Therefore, you
have to check for errors before making a boolean expression. This can be done like this:

Vec4d a , b ;
. . .
i f (! hor izontal_and (i s _ f i n i t e (a))) {

// handle e r r o r
. . .

}
Vec4db f = a > 1 . 0 ;
b = s e l e c t (f , a , 0 . 5) ;

Compile-time errors

The Vector Class Library is making heavy use of metaprogramming features that go to the limit of
what modern compilers can do. Occasional problems have been observed with all compilers. Errors
that are specific to a particular compiler are listed in separate files at the GIT repository under
miscellaneous. Please check these lists of known errors before reporting a problem.

Even small syntax errors may result in very long error messages due to the heavy use of templates and
overloading. These error messages may be confusing, but generally indicating the line number of the
error.

Integer vector division by a const_int or const_uint can produce a compile-time error message when
the divisor is zero or out of range.

”Ambiguous call to overloaded function”:
This can happen when parameters have wrong types. Make sure all parameters have the correct type.

Version 1.xx of VCL may produce error messages that are not very informative, such as
”Static_error_check<false>” due to limitations in template metaprogramming.

Link errors

”unresolved external symbol __intel_cpu_indicator_x”:
This link error occurs when you are using Intel’s SVML library without including a CPU dispatcher.
Add the library libircmt.lib or libirc.a to use Intel’s CPU dispatch function. Make sure to choose the
32-bit or 64-bit of the library, as appropriate. See page 58 for details.

”unresolved external symbol __svml_sin2@@16, etc.
You need to link the library svmlpatch.lib, which you can find at the git repository under
miscellaneous.

Implementation-dependent behavior

A big advantage of the VCL library is that you can compile the same source code for different
instruction set extensions. A higher instruction set will generally give faster code, but produce the

89

https://github.com/vectorclass/miscellaneous

same results. There may, however, be cases where the same code generates different results with
different instruction sets or different compilers. These cases include:

• An index out of range produces implementation-dependent results. Functions such as insert,
extract, load_partial, store_partial, cutoff, permute, blend, lookup, gather, and scatter may
produce different results for an index out of range depending on the instruction set. No
exception or error message is generated, only a meaningless number.

• permute and blend functions allow a ”don’t care” index (V_DC) to be specified. The result for
a don’t care element may depend on the instruction set.

• Negative zero. The floating point values of 0.0 and -0.0 are normally regarded as equal. Some
functions may return 0.0 or -0.0 depending on the instruction set, e.g. when rounding a
negative number. The sign of a zero can be detected by the functions sign_bit and
sign_combine. You may #define SIGNED_ZERO to get consistent and pedantic
conformance to the specifications of signed zero in the IEEE 754-2019 standard.

• NANs. An error code can be propagated through NAN (not-a-number) values and retrieved by
the function nan_code. When two NAN values with different codes are combined, for example
by adding them together, the result may be either of the two values, depending on the compiler.
The sign of a NAN has no meaning and may vary.
Use the minimum and maximum functions rather than min and max if you want to propagate
NAN values through these functions.

12.2 Floating point behavior details
The Vector Class Library is generally conforming to the new IEEE 754-2019 Standard for
Floating-Point Arithmetic, but some compromises have been necessary for the purpose of vector
processing and for better performance. The deviations from the standard are discussed below.

Subnormal numbers. Subnormal numbers (also called denormal numbers) are numerically extremely
small floating point numbers where the exponent is below the normal range. Some
microprocessors are handling subnormal numbers in a very inefficient way that is more than a
hundred times slower than for normal floating point numbers. You may call the function
no_subnormals() to prevent this and treat subnormal numbers as zero in single and double
precision floating point calculations. Calculations in half precision are generally efficient even
when values are subnormal. Some of the mathematical functions in VCL always treat subnormal
numbers as zero for reasons of performance. This includes logarithm, exponential, and power
functions.

Signed zero. Signed zero is a controversial issue. The floating point standard defines two different
zeroes: +0.0 and -0.0. The two zeroes are equal, but still distinguishable. Some of the
functions may return +0.0 where the standard requires -0.0.
You may #define SIGNED_ZERO if you want the sign of zero to conform to the IEEE
754-2019 standard, though this may slow down performance a little. SIGNED_ZERO may
affect several functions, including round, truncate, floor, ceil, maximum, minimum, cbrt,
pow_ratio, expm1, log1p.

No exception trapping. Floating point errors are traditionally detected by trapping errors or relying
on an errno variable. These methods are not well suited for vector processing and out-of-order
processing. This is explained in the document ”NAN propagation versus fault trapping in
floating point code”, Agner Fog, 2019.

90

https://www.agner.org/optimize/nan_propagation.pdf
https://www.agner.org/optimize/nan_propagation.pdf

The Vector Class Library does not support fault trapping, and it does not indicate exceptions in
a variable such as the traditional errno. It is not recommended to turn on floating point
exceptions because this can cause inconsistent behavior, such as traps for exceptions in
not-taken branches. Do not attempt to trap numerical errors in try/catch blocks.

Instead, the vector class library indicates floating point exceptions by producing INF or NAN
codes in the individual vector element that produced the fault. The INF and NAN codes will
propagate to the end result of a series of calculations when certain conditions are satisfied. The
most efficient way of detecting floating point errors is to look for INF and NAN codes in the
result.

Conditions where INF and NAN codes are not propagated are discussed at page 88

Do not use the compiler options -ffast-math, -ffinite-math-only, or /fp:fast because this may
disable the detection of INF and NAN.

No signaling NANs. Signaling NANs are special codes that will raise an exception when they are
loaded from memory. Signaling NANs are rarely used in modern software. Signaling NANs
should not be used in VCL because exception trapping is not supported.

NAN payload operations. A NAN may contain additional information called a payload. This
payload can propagate through a series of calculations to the end result. Some of the
mathematical functions in VCL can put a payload into the NAN result in case of an error. This
makes it possible to identify which function generated the NAN.

The nan.. and nan_code functions make it possible to set and get NAN payloads. The IEEE
754 standard does not specify what happens to the payload when converting between single and
double precision, but experiments show that all microprocessors that use the binary floating
point format will left-justify the payload. The nan.. and nan_code functions treat the NAN
payload as a 22-bit left-justified unsigned integer in order to allow conversions between single
and double precision. These functions deviate from the IEEE 754-2019 standard.

NAN propagation in maximum and minimum functions. The max and min functions do not
propagate NANs according to the 2008 version of the standard. This unfortunate situation is
redressed in the 2019 revision of the standard. VCL offers two different versions of these
functions: The max and min functions are equivalent to a > b ? a : b and a < b ? a : b,
respectively. These functions return b if a is NAN. The slightly less efficient functions
maximum and minimum are sure to propagate NANs, in accordance with the 2019 revision of
the standard.

NAN propagation in pow function. The standard specifies that pow(NAN,0) and pow(1,NAN) will
give the result 1.0. The VCL implementation deviates from this and produces a NAN output in
all cases where an input is NAN, in order to support reliable NAN propagation.

Function parameter range. Some of the mathematical functions have internal overflow for extreme
values of the input parameters. These functions have a limited input range because an extra
branch to handle the extreme cases would reduce the overall performance. Limitations of the
input range are mentioned in the listing of the individual functions.

12.3 Making add-on packages
Anybody can contribute add-on packages for VCL. Contributors must follow the following guidelines:

91

Purpose
The package must serve a general purpose that is useful for others. The code must rely on the VCL.

Open source
The package must be published under an open source license. The preferred license is the same as for
VCL, i.e. Apache 2.0 license or later. Other accepted licenses include GPL 3.0 or later, LGPL 3.0 or
later, and revised BSD license.

Documentation
The package must include an instruction manual in English. The manual may be supplied in one of
these formats:

• Plain text as a an ASCII .txt file

• Plain text as a comment in the beginning of the code file

• A .pdf file. The source needed for modifying and rebuilding the .pdf file must be included. The
file format of the pdf source must be .tex, .odt, or .docx. Closed, proprietary file formats are
not allowed.

The documentation must include the name and contact information of at least one person responsible
for maintaining the code.

VCL does not use Doxygen or other kinds of metadata for generating documentation. You may use
an advanced IDE such as Microsoft Visual Studio for navigating, tracing, browsing, and finding
cross-references.

Coding style
The code must be in C++ language, with file format .h and/or .cpp. Names and comments must use
English language. Name, date, and version number must be written in a comment at the beginning of
each code file.

The file format is plain ASCII. UTF-8 should be avoided if possible. Use Windows-style linefeeds, i.e.
\r\n. Indent 4 spaces for every block level. Tabs are not allowed. Remember to set the option in your
editor to use spaces instead of tabs.

The purposes of all classes, functions, and variables must be explained in comments unless they are
self-explaining.

Use curly brackets for branches and loops. A closing curly bracket must be placed on a separate line.
An opening curly bracket does not need a separate line. else-if may be contracted without an extra
curly bracket. Example:

i f (a < 0) {
// negat ive

}
e l s e i f (a == 0) {

// zero
}
e l s e {

// p o s i t i v e
}

Optimization
All functions and operators in .h files should be static and inline.

92

Do not optimize the code for a specific microprocessor, but focus on what is likely to be optimal on
future microprocessor models. The most likely bottlenecks to consider are cache use, instruction
decoding, and dependency chains. Small loops are usually more efficient than large unrolled loops.

Minimize the use of static constants because they take op memory space even when they are not
used. Static constants may be stored in templates that are not instantiated if they are not used.

Preprocessing #define’s must have unique names that are unlikely to cause name clashes because
they are in the global namespace. It is preferred to use const int etc. instead for defining constants.

Testing
Any code must be thoroughly tested with the latest version of VCL before submission. It should
preferably be tested with multiple different compilers and different operating systems. Add-on
packages may have their own test bench.

12.4 Contributing to VCL
Bug reports
Bug reports should preferably be filed as issues on the git repository. Please check the list of known
bugs at the GIT repository under miscellaneous.

Avoid feature bloat
Do not put new features into the main VCL files unless there is general agreement that they are
needed. Special purpose features should instead be placed in add-on packages.

The coding style must follow the guidelines listed above on page 92. Do not insert metadata for
Doxygen or similar tools. Follow the optimization guidelines mentioned above.

Any modification to the main VCL files should be tested with different compilers and different
operating systems on the test bench described below in chapter 12.5. Avoid any files or features that
are specific to a particular CPU, operating system, platform, or development tool.

Copyright is a problem. If different contributions are copyrighted by different contributors than it will
be impossible to make any legal decisions regarding VCL if not all contributors can be contacted.
There are plans to assign the copyright to a non-profit organization, but no particular organization
has been chosen yet.

12.5 Test bench
A test bench has been developed for the purpose of automatic testing of VCL. The test bench
includes C++ code and a bash script for automatic testing of operators and functions. The script will
run through a list of test cases to test each operator and function with many different combinations
of vector classes, instruction sets, compilers, and operating systems. Each test case will be
implemented by compiling and running a small test program and comparing the resulting values with
the expected values.

The test bench is used in the development of VCL. It is not intended for programmers that use the
VCL. All code and documentation for the test bench is provided in the folder named testbench.

12.6 File list

File name Purpose
manual/vcl_manual.pdf Instruction manual (this file)

93

https://github.com/vectorclass/miscellaneous

vectorclass.h Top-level C++ header file. This will include several other
header files, according to the indicated instruction set

instrset.h Detection of which instruction set the code is compiled for,
and functions that depend on the instruction set. This file
also contains various common definitions and templates.
Included by vectorclass.h

vectori128.h Defines classes, operators and functions for integer vectors
with a total size of 128 bits. Included by vectorclass.h

vectori256.h Defines classes, operators and functions for integer vectors
with a total size of 256 bits for the AVX2 instruction set.
Included by vectorclass.h if appropriate

vectori256e.h Defines classes, operators and functions for integer vectors
with a total size of 256 bits for instruction sets lower than
AVX2. Included by vectorclass.h if appropriate

vectori512.h Defines classes, operators and functions for vectors of 32-
bit and 64-bit integers with a total size of 512 bits for the
AVX512F instruction set. Included by vectorclass.h if appro-
priate

vectori512e.h Defines classes, operators and functions for vectors of 32-bit
and 64-bit integers with a total size of 512 bits for instruc-
tion sets lower than AVX512F. Included by vectorclass.h if
appropriate

vectori512s.h Defines classes, operators and functions for vectors of 8-
bit and 16-bit integers with a total size of 512 bits for the
AVX512BW instruction set. Included by vectorclass.h if ap-
propriate

vectori512se.h Defines classes, operators and functions for vectors of 8-bit
and 16-bit integers with a total size of 512 bits for instruc-
tion sets lower than AVX512BW. Included by vectorclass.h if
appropriate

vectorf128.h Defines classes, operators and functions for floating point
vectors with a total size of 128 bits. Included by vectorclass.h

vectorf256.h Defines classes, operators and functions for floating point
vectors with a total size of 256 bits for the AVX and later
instruction sets. Included by vectorclass.h if appropriate

vectorf256e.h Defines classes, operators and functions for floating point
vectors with a total size of 256 bits for instruction sets lower
than AVX. Included by vectorclass.h if appropriate

vectorf512.h Defines classes, operators and functions for floating point
vectors with a total size of 512 bits for the AVX512F and
later instruction sets. Included by vectorclass.h if appropriate

vectorf512e.h Defines classes, operators and functions for floating point
vectors with a total size of 512 bits for instruction sets lower
than AVX512F. Included by vectorclass.h if appropriate

vectorfp16.h Defines classes, operators and functions for half precision
floating point vectors of all sizes, including mathematical
functions, for AVX512-FP16

vectorfp16e.h Defines emulating classes, operators and functions for half
precision floating point vectors of all sizes, including mathe-
matical functions, for processors without AVX512-FP16

vector_convert.h Defines functions for conversion between different vector
sizes, as well as some generic function templates.

94

vectormath_exp.h Optional inline mathematical functions: power, logarithms
and exponential functions

vectormath_trig.h Optional inline mathematical functions: trigonometric and
inverse trigonometric functions

vectormath_hyp.h Optional inline mathematical functions: hyperbolic and in-
verse hyperbolic functions

vectormath_common.h Common definitions for vectormath_exp.h, vectormath_trig.h
and vectormath_hyp.h

vectormath_lib.h Optional header file for external mathematical vector function
library

instrset_detect.cpp Optional functions for detecting which instruction set is
supported at runtime

dispatch_example.cpp Example of how to make automatic CPU dispatching
LICENSE Apache 2.0 license
changelog.txt VCL version history
miscellaneous/svmlpatch Folder containing the library svmlpatch.lib as well as the

source code to build it. Used for fixing a compatibillity issue
with Intel SVML library in 64-bit Windows

testbench Folder containing test bench files for testing the VCL library.
This is used in the development of VCL, and is not needed by
programmers using the VCL. Includes code and documenta-
tion.

95

	Introduction
	How it works
	Features of VCL
	Instruction sets supported
	Platforms supported
	Compilers supported
	Intended use
	How VCL uses metaprogramming
	Availability
	Support
	License

	The basics
	How to compile
	Overview of vector classes
	Half precision floating point vectors
	Compiler support
	Half precision vector classes
	Functions and operators

	Constructing vectors and loading data into vectors
	Getting data from vectors
	Arrays and vectors
	Using a namespace

	Operators
	Arithmetic operators
	Logic operators
	Integer division

	Functions
	Integer functions
	Floating point simple functions

	Boolean operations and per-element branches
	Internal representation of boolean vectors
	Functions for use with booleans

	Conversion between vector types
	Conversion between data vector types
	Conversion between boolean vector types

	Permute, blend, lookup, gather and scatter functions
	Permute functions
	Blend functions
	Lookup functions
	Gather functions
	Scatter functions

	Mathematical functions
	Floating point categorization functions
	Floating point control word manipulation functions
	Standard mathematical functions
	Inline mathematical functions
	Using an external library for mathematical functions
	Powers, exponential functions and logarithms
	Trigonometric functions and inverse trigonometric functions
	Hyperbolic functions and inverse hyperbolic functions
	Other mathematical functions

	Performance considerations
	Comparison of alternative methods for writing SIMD code
	Choice of compiler and function libraries
	Choosing the optimal vector size and precision
	Putting data into vectors
	Alignment of arrays and vectors
	When the data size is not a multiple of the vector size
	Using multiple accumulators
	Using multiple threads
	Instruction sets and CPU dispatching
	Function calling convention

	Examples
	Add-on packages
	Technical details
	Error conditions
	Runtime errors
	Floating point errors
	Compile-time errors
	Link errors
	Implementation-dependent behavior

	Floating point behavior details
	Making add-on packages
	Contributing to VCL
	Test bench
	File list

