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SUMMARY.   Two different probability distributions are both known in the literature as 
"the" noncentral hypergeometric distribution. Wallenius' noncentral hypergeometric 
distribution can be described as an urn model with bias. Fisher's noncentral 
hypergeometric distribution is the conditional distribution of independent binomial 
variates given their sum. Several different methods for calculating probabilities from 
Wallenius' noncentral hypergeometric distribution are derived. Range of applicability, 
numerical problems and efficiency are discussed for each method. Approximations to the 
mean and variance are also discussed. This distribution has important applications in 
models of biased sampling and in models of evolutionary systems. 

KEY WORDS:  Noncentral hypergeometric distribution; Wallenius; Fisher; Multivariate 
distribution; Probability function. 

1. Introduction 

Two different probability distributions are both known in the literature as the noncentral 
hypergeometric distribution. These two distributions will be called Wallenius' and Fisher's 
noncentral hypergeometric distribution, respectively. The nomenclature problems are discussed 
below. Fisher's noncentral hypergeometric distribution is the conditional distribution of 
independent binomial variates given their sum (McCullagh and Nelder, 1983). Wallenius' 
noncentral hypergeometric distribution is a distribution of biased sampling. It can be described 
as an urn model without replacement with bias. Wallenius' distribution has many potential 
applications including models of selective survival and selective predation in ecology and 
evolutionary biology (Manly, 1985), models of vaccine efficacy (Hernández-Suárez and 
Castillo-Chavez, 2000), as well as general models of biased sampling (Wallenius, 1963). The 
application of this distribution has been hampered by the fact that the only published calculation 
method (Lyons, 1980) is numerically unstable, inefficient, and applicable only to a narrow range 
of parameters, as explained below. The purpose of the present study is to seek reliable 
calculation methods that are applicable to a wide range of parameters, including the multivariate 
case. Methods for sampling from this distribution are described in an accompanying paper (Fog, 
2007). 

2. Definition and properties 

Assume that an urn contains ∑
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balls of c different colors, where mi is the number of 

balls of color },...,1{ cCi =∈ .  n balls are sampled, one by one, from the urn without replacement 
in such a way that  the probability that a particular ball is sampled at a given draw is proportional 
to a property wi which we will call weight or odds. The weight of a ball depends only on its color 
i. Let ),...,,( 21 νννν cXXX=X  denote the total number of balls of each color sampled in the first n 
draws. The probability that the next draw gives a ball of color i is 
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The probability function for this distribution has been derived by Wallenius (1963) for the 
univariate case (c = 2) and by Chesson (1976) for the multivariate case: 
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which is valid for d > 0. The unexpected integral in (4) arises as the solution to a discrete 
difference equation (Wallenius, 1963; Chesson, 1976). 

The odds can be arbitrarily scaled: 
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The univariate distribution (c = 2) can be defined as the probability function 
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where x1 = x,  x2 = n-x,  m1 = m,  m2 = N-m,  w1 = w,  w2 = 1. The following properties of the 
univariate distribution are easily derived: 
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The distribution of the balls that are left in the urn is not a Wallenius' noncentral hypergeometric 
distribution. This is a lack of symmetry that distinguishes Wallenius' from Fisher's noncentral 
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hypergeometric distribution. We will therefore define the complementary Wallenius' noncentral 
hypergeometric distribution as the distribution of the balls that remain in the urn: 
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This function is used for modeling the distribution of survivors after a Darwinian selection 
process (Manly, 1974). 

3. Nomenclature problem 

The two noncentral hypergeometric distributions are often confused in the literature or assumed 
to be identical (e.g. Lyons, 1980; SAS Institute, 2002). Discussions with a number of relevant 
scientists1 has led me to the conclusion that the best solution to the name conflict is to apply the 
prefixes Wallenius' and Fisher's to the name in order to distinguish the two distributions. Fisher's 
noncentral hypergeometric distribution, introduced without a name by Fisher (1935), was first 
given the name extended hypergeometric distribution (Harkness, 1965), but some of my 
correspondents were strongly opposed to using this name. While the use of prefixes makes the 
names rather long, it has the advantage of emphasizing that there is more than one noncentral 
hypergeometric distribution, whereby the risk of confusion is minimized. 

4. Mean and variance 

The mean ),...,( 1 ννν µµ c=µ  of Xn can be approximated by 
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This set of difference equations can be approximated by a set of differential equations with the 
solution given by (Manly, 1974): 
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The solution ),...,( **
1

*
cµµ=µ  is an approximation to the mean µ of X, which is valid under the 

conditions that 00: >∧>∈∀ iimCi ω . Interestingly, the mean given by (14) is a good 
approximation, and in most cases better than the value obtained by iteration of (13). (14) is exact 
when all wi are equal, while (13) is not. Manly (1974) derived (14) for the purpose of estimating 
the wi's from experimental samples. To solve (14) for the means, define 

                                                 
1 Norman Breslow, Jean Chesson, Nick Day, James Gentle, Carlos Hernandez-Suarez, Norman L. Johnson, Samuel 
Kotz, Bruce Levin, Jiangang Liao, Bryan Manly, Peter McCullagh, Jordi Ocaña, and Ted Wallenius. 
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and solve z(q) = n by Newton-Raphson iteration. In the univariate case with w > 1, it may be 
more efficient to solve 
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Manly, Miller and Cook (1972) give an exact expression for the variance s2 of the univariate 
distribution as a function of m1n , n = 1,...,n. Unfortunately, this expression is so sensitive to 
inaccuracies in the means m1n , that it is useless unless all the means are known with very high 
precision. 

An approximation to the variance can be obtained by approximating Wallenius' noncentral 
hypergeometric distribution with a Fisher's noncentral hypergeometric distribution with the same 
mean and using an approximate formula given by Levin (1984) for the variance of the latter 
distribution: 
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This approximation is good when w is near 1 and n is far from N. 

A simple relationship between s and the maximum of the probability function f is obtained from 
the normal distribution approximation: 

π
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where M is the mode. This approximation is better than sF in some cases where s is high. 
However, (18) has an obvious limitation since πσ 2/1≥N . 

5. Methods for calculation of the probability function 

Only one calculation method has hitherto been mentioned in the literature (Lyons, 1980). 
Unfortunately, this method is inefficient and entails serious numerical problems, as explained 
below. Several other methods will be developed here, and the applicability of each method will 
be discussed. 

5.1  Recursive calculation 

The most obvious calculation method for the univariate distribution is the recursive application 
of (10). Figure 1 illustrates this method. The field with coordinates (n,x) represents the 
probability that there are exactly x balls of color 1 among the first n balls drawn from the urn. 
The value of each field is calculated from the field to the left of it and the field below the latter. 
The chain of arrows constitutes an arbitrary trajectory. This method has excellent numerical 
stability for all parameter values. The accumulation of rounding errors is not severe. Numerical 
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underflow can occur, but can safely be ignored. This method is inefficient when n and x are high, 
since the number of probabilities to calculate is n(x+1)-x2. The economy of this method can be 
improved by ignoring negligible probabilities far from the mean. The recursive method can be 
used in all situations where the economy of computer resources allows it. This method becomes 
complicated and inefficient in the multivariate case. 

 
fig. 1.  Recursive calculation of Wallenius probabilities.  

 

5.2  Binomial expansion methods 

Let r be a positive scale factor, and substitute t = trd into (4): 
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Consider the univariate case (c = 2), let w1 = w, w2 = 1, r = 1, and apply (2) and (3): 
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Applying the binomial theorem to (1-tw)x and swapping the order of integration and summation 
gives: 
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This integral is known as the Beta function 
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Using G(a+1) = a!, this can be reduced to 

∑
=

=
x

j
jx

xx qdmmNmnx
0

2
2),,,;wnchypg( ω ,   1

2
2))(()!(!

)1(
++−+−

−= x

j

jx mxjmjxj
q

ω
, (24) 

where the notation ba  means the falling factorial power, defined by 
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The following recursion formula holds for j>0 ∧  x>0: 
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As a corollary of (24), the case x = 0 gives 
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This method can be expanded to the multivariate case by binomial expansion of the powers in 
(19) for all but the largest of xi, giving c-1 nested sums. In the case where all but one of the xi 
values are zero, we get 
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The summation in (24) can cause serious numerical problems, even for moderate values of the 
parameters. For example, a calculation of wnchypg(46;80,50,100,5) using (24) with double 
precision gives the value ø34.49. The correct value is 0.002530. This error is due to loss of 
precision, evidenced by the fact that the numerically largest of the qjx terms is 1.3ÿ1019 times as 
large as than the final sum. This method is therefore not reliable unless the number of summation 
terms is quite small. 

The method given by Lyons (1980) is obtained by binomial expansion of both powers in (4) for 
the univariate case. This gives 
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The numerical problems in (29) are generally worse than in (24). A calculation of the same 
numerical example as above with this method gives the somewhat dubious result -6.04ÿ1022. The 
error is due to loss of precision in both sums. For the outer sum, the numerically largest term is 
7.2ÿ1026 times the final sum. Furthermore, (29) is less economical than (24) because of the nested 



7 

sums. Lyons' method is therefore not recommendable. 

5.3  Taylor expansion methods 

Consider the definite integral of an arbitrary function: 
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Define an auxiliary function U(t) and a correction function )(/)()( τττ UΦ=Ψ . Assume that 

these three functions are all analytic in the complex disk { }R<−∈ 0| τττ Â . Expanding Y(t) in a 
Taylor series and swapping the order of integration and summation gives 
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This expansion is convergent for d < R because integration does not change the radius of 
convergence. If U(t) is symmetric around t0 then the odd terms in the sum vanish: 
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The auxiliary function U(t) should be chosen so that this integral can be calculated analytically. 
The convergence of this expansion is most likely to be good if U(t) is chosen so that Y(t) has 
most of its weight near t0. 
A Taylor method is not suited for the integral (4) because the integrand has most of its weight 
near 0 where, in most cases, it is not differentiable. The transformed integral (19) is preferred. 
Let  
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Analysis of )(τϕτ ′  shows that j(t) and F(t) have a single maximum in the interval 0 < t0 < 1 
when r > 1/d. The preferred value of the mode t0 is ½. In order to obtain this value, we define 
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and observe that the equation z(r) = 0 has a unique solution in the interval 1/d < r < ∞, which can 
be found by the Newton-Raphson iteration: 
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Henceforth, we will assume that r is the solution to z(r) = 0, so that the mode t0 = ½. With these 
values of r and t0, we can apply (32) to the calculation of the integral (19). 

Three different choices for the auxiliary function U(t) will be explored: 
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The parameters of U2 and U3 are both chosen so that the first two derivatives are equal to the 
derivatives of F. The first choice, U(t) = U1(t), gives 
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The derivatives F(k)(½) are obtained by logarithmic differentiation. Applying Leibniz's rule for 
differentiation of a product to )()()( τϕττ ′Φ=Φ′  gives  
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The k'th derivative of j for k > 0 can be expressed by the formula 
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(43) and (44) are both proved by induction. 

The nearest singularities of F(t) are t = 0 and 1 (except in the rare case that all powers are 
integers). Therefore, the radius of convergence is ½, and the expansion (41) is convergent for d < 
½. A typical shape of the integrand curve F(t) is shown in fig. 2a. In order to estimate the 
relative error when the integration interval is narrowed to d < ½, we approximate the integrand 
curve F(t) with the Gauss curve U2(t), given by (39). The relative error due to the narrowed 
integration interval is 
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Thus, we can find a suitable value of d from the desired precision ε: 
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The atypical case in fig. 2b, where the Gauss curve is a poor approximation to F, will lead to an 
overestimation of the relative error ε and to the conclusion that the Taylor method is unsuitable. 

 

 fig. 2a. Typical shape of integrand F(t). 
 (x=40, n=80, m=50, N=100, w=2, c=2) 

     fig. 2b. Integrand with distorted shape. 
     (x=999, n=999, m=999, N=1000, w=15, c=2) 

 

These results regarding convergence, precision, and the value of d also pertain to the second and 
third choice for U(t) discussed below. 
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The second choice, U(t) = U2(t), gives 
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This integral is known as the repeated integral of the error function (Abramowitz and Stegun, 
1965). Integrating by parts j times, noting that 
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The bracketed expression is a residue of the known series 
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To obtain the derivatives of Y(t), we define )(log)( ττψ Ψ= . The first two derivatives of j(t) 
are contained in u(t) = log U(t). Therefore,  
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where it is understood that the summation is zero when the upper limit is less than the lower 
limit. The value of D to insert in (52) is δv2 , which can be simplified when d < ½ to 
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The fact that D depends only on the desired precision ε, makes it advantageous to store pre-
calculated values of G(D, j) in a table for suitable values of ε. 

The third choice, U(t) = U3(t), gives 
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where By denotes the incomplete Beta function 
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To obtain the derivatives of Y(t), we note that the derivatives of u(t) = log U(t) can be 
calculated in the same way as the derivatives of j(t). Therefore, the derivatives of  y(t) = j(t) - 
u(t) can be calculated by adding an extra term to the i-sum in (44). For k > 1, 
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where we define bxc −=+1  and rc /11 =+ω . Now 
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ψψ ,  Y(½)=1,  Y'(½)=0,  Y''(½)=0. (59) 

An experimental evaluation of the three Taylor methods described here finds that the second and 
third methods have considerably faster convergence than the first method. The convergence may 
be satisfactory even when d = ½. In many cases, the third method has the fastest convergence. 
Nevertheless, the second method may be preferred for economic reasons since it can use pre-
calculated values of ),G( jD  when d < ½, while the third method requires the more time-
consuming calculations of the incomplete Beta function. The third method is preferred when d = 
½ where the incomplete Beta function is replaced by the complete Beta function. 

To summarize, ),,;mwnchypg( ωmx n  can be calculated with approximate precision ε, if d < ½, 
by using equations (36), (37), (46), (43) or (44), (53), (54), (51), (52), (3) and (2). It is 
recommended to scale the sum terms in (52) with A0L(x) to avoid numeric overflow and 
underflow. The evaluations of the equations (36), (37), (43) and (44) all involve expressions of 
the type jy )21( − . Appropriate Taylor expansions are recommended to avoid loss of precision in 
these expressions when y is near zero or large negative. 

The convergence may be poor when d is low. As an aid for predicting how good the convergence 
is, we define the normalized reciprocal d: 
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mω . (60) 

A high value of E indicates a distorted integrand curve (E = 5 for fig. 2a, and 14986 for fig 2b). 
It has been found experimentally that the convergence of the second and third method is good 
when d < 0.25 and E < 10. 

As a corollary to the expansion formulas, we may obtain reasonable approximations by 
truncating the series. Truncating the expansion (56) to its first term with d = ½ gives the 
approximation 

)(2
)1( )(),,;mwnchypg(

2
30 +Γ
+ΓΛ≈

b
bAn πxωmx . (61) 

Truncating the expansion (47) to its first term with d = ¶ gives the approximation 

2
0)(),,;mwnchypg(

a
An

−
Λ≈ πxωmx . (62) 

The exponent in the first term of (47) is u(t) which is a 2'nd order Taylor approximation to j(t) 
= log F(t). This approximation method is known as Laplace's method, resulting in (62). 
According to Bender and Orszag (1978:272), the accuracy of Laplace's method can be improved 
by adding more terms to the Taylor expansion of j(t). The calculation according to Bender and 
Orszag's method involves nested Taylor sums and possible convergence problems. These 
disadvantages are avoided here by expanding Y(t) rather than j(t). This method is an 
improvement to Laplace's method with general applicability to integrals of unimodal functions. 

5.4  Continued fraction expansion 

The convergence of the abovementioned three expansions can be accelerated considerably by 
conversion of the Taylor expansions to the corresponding continued fraction expansions in cases 
where d is near or equal to ½ and the convergence is poor. No improvement is obtained in cases 
where the convergence of the Taylor expansion is already good. The continued fraction 
expansion corresponding to a Taylor expansion is calculated by the method described by Perron 
(1913). While the Taylor expansion is theoretically convergent for d < ½, the corresponding 
continued fraction expansion is theoretically divergent, but practically applicable. The continued 
fraction method has the disadvantages that it requires the calculation of large Hankel 
determinants and that it is difficult to evaluate the precision obtained. This method will therefore 
not be described in further detail here. 

5.5  Numerical integration 

Numerical integration is needed in cases where none of the abovementioned calculation methods 
are applicable. The integrand in (4) is not suited for numerical integration because it has most of 
its weight near 0 where, in most cases, it is not analytic. We prefer to integrate F(t) given by 
(33), using the value of r obtained from (36) and (37). We may improve the performance by 
integrating F(t)+F(1-t) over half the interval to take advantage of the fact that F(t) is almost 
symmetric. A Gauss-Legendre method (Evans, 1995) with 4 - 10 points and a variable step 
length is suitable. The step length should be small where the integrand curve is steepest, which is 
the endpoints or inflection points, as seen in figure 2a and b. 
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6. Software implementation 

A C++ implementation of the methods described here can be downloaded from 
www.agner.org/random. 

7. Suggestions for future research 

Better approximations to the mean and variance would be useful. Numerical integration is the 
only method that is suitable for the cases where n and E are both high. A more efficient 
calculation method covering such cases is needed. Equation (46) gives an approximate upper 
limit to the relative error of the Taylor expansion methods. This error estimate appears to be 
reliable in practice, but an exact upper limit to the error may be preferable. Fisher's noncentral 
hypergeometric distribution is more well-researched than Wallenius' distribution. More research 
on the behavior of the latter is needed. A comparison of the two distributions has never been 
published. 
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